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1.0 RESEARCH SUMMARY

This year we focused on unsupervised learning and adaptive

fuzzy systems. Graduate students Seong-Gon Kong and Peter Pacini

assisted me in simulations and paper preparation. (USC's School

of Engineering, not AFOSR, financially supported Peter Pacini.)

In unsupervised learning, we explored the differential

competitive learning law. This unsupervised learning law differs

from the standard competitive learning law, which modifies a

synapse only if its post-synaptic neuron "wins" a competition for

activation or pattern stimulation. The differential competitive

learning (DCL) law modifies the synapse only if its post-synaptic

neuron changes. Standard competitive learning ignores this



instantaneous win-rate information. The plus-or-minus sign of

the neuronal time derivatives endows DCL with many of the coding

properties shared by supervised competitive learning laws, which

reward or punish synapses, according as the post-synaptic neuron

classifies or misclassifies an input pattern, by changing the

sign of a difference term.

We showed that DCL behaves as a type of adaptive delta-

modulation procedure. When sampling highly correlated data, such

as speech data, the pairwise difference of of samples provably

contains more information (has less variance) than the samples

themselves.

We tested DCL against both unsupervised and supervised

competitive learning (SCL) for centroid estimation and for

phoneme recogntion. DCL consistently outperformed SCL, which

always outperformed unsupervised competitive learning. In the

nonlinear case, DCL synaptic vectors converged to pattern-class

centroids faster than SCL synaptic vectors conv rged to them. In

the linear case, both types of synaptic vectors converged equally

quickly to centroids. But once the synaptic vectors reached the

centroids, DCL synaptic vectors wandered less about the centroids

than the SCL synaptic vectors wandered. (Since we modeled

learning with stochastic differential equations, stochastic

equilibria corresponds to Brownian wandering about a fixed

point.) The paper "Differential Competitive Learning for

Centroid Estimation and Phoneme Recognition" summarizes these

results and will appear in the January 1991 issue of the IEEE

Transactions on Neural Networks.



In adaptive fuzzy systems, I developed the general AFAM

(adaptive fuzzy associative memory) methodology and successfully

applied it to two control problems: backing up a truck-and-

trailer rig in a parking lot (a mathematically unsolved control

problem) and realtime target tracking. This research, along with

my pure research on fuzzy set theory, published this summer as

"Fuzziness vs. Probability" in the International Journal of

General Systems, has generated widespread technical and popular

interest. Several popular and technical publications have

featured it. These publications include Electronic Engineering

Times, the Los Angeles Times, Popular Science, the Economist, and

Breakthroughs. As program chairman of the first international

conference on neural network and fuzzy theory in Iizuka Japan in

July 1990, I presented these concepts to a wide international

audience in my plenary lecture.

The key research contribution was product space clustering

(PSC). I developed the geometry of fuzzy systems as mappings

between unit hypercubes. (Fuzzy sets define points in unit

hypercubes. Nonfuzzy sets define the 2n vertices of an n-

dimensional hypercube.) PSC estimates a fuzzy system as a

surface in the system's input-output product state space. We

partition the input-output state space into FAM cells. Each FAM

cell defines a fuzzy "rule" or general association of fuzzy

output descriptions with fuzzy input descriptions: If the

traffic is HEAVY in one direction, then keep the light green

LONGER in that direction. (HEAVY, LONGER) defines a FAM rule in



the input-output state space as region or mini-Cartesian product.

PSC estimates these regions with unsupervised learning.

I showed how to use differential competitive learning to

adaptively, quickly, and reliably generate banks of structured

fuzzy rules given only the input-output training data generated

by the physical process, the human controller, or, in general,

the system we wish to estimate. We can present the same input-

output data to a neural network. The neural network may or may

not accurately estimate the underlying unknown function (or joint

probability distribution). But it can generate only a black-box

or "model-free" estimate. Stand-alone neural networks do not

generate stuctured rules.

We benchmarked neural and fuzzy systems for backing up a truck,

and also a truck-and-trailer, in a parking lot. Both systems

controlled the truck and truck-and-trailer successfully. But the

fuzzy system was orders of magnitude easier to construct and, in

the adaptive case, train. We could also modify the fuzzy system

directly by manipulating its bank of FAM rules. We tested the

fuzzy system's robustness by removing random subsets of FAM rules

and by deliberately important rules with destructive or

"sabotage" rules. In general we found that fuzzy system

performance degrades significantly only if we remove over 50% of

the FAM rules. We also showed how to convert every neural

network system to a structured fuzzy system, complete with bank

of FAM rules, that approximates the underlying neural system. We

demonstrated this for both the backpropagation truck and truck-



and-trailer systems. The generated fuzzy systems performed

comparably to the original fuzzy systems.

We benchmarked an adaptive fuzzy system for realtime target

tracking against an "optimal" linear Kalman-filter control

system. Again both systems controlled the process well. The

fuzzy system gave finer control, involved far less computation,

required no assumption of how control outputs mathematically

depended on control inputs, and proved robust when we removed FAM

rules or replaced them with sabotage rules. The Kalman-filter

controller proved sensitive to the variance of the unmodeled-

effects parameter.

2.0 PUBLICATIONS

The above research led to several technical papers. We

published some in proceedings and some in journals. Others await

appearance or remain in the review process. This report includes

copies of papers.

2.1 Journal Papers

1. Kosko, B., "Unsupervised Learning in Noise," IEEE



Transactions on Neural Networks, vol. 1, no. 1, 44 - 57, March

1990.

2. Kosko, B., "Structural Stability of Unsupervised Learning in

Feedback Networks," IEEE Transactions on Automatic Control, in

press, 1990.

3. Kosko, B., "Fuzziness vs. Probability," International Journal

of General Systems, vol. 17, no. 2, 211 - 240, 1990.

4. Kosko, B., "Differential Competitive Learning for Centroid

Estimation and Phoneme Recognition," with S.G. Kong, IEEE

Transactions on Neural Networks, to appear, January 1991.

5. Kosko, B., "Stochastic Competitive Learning," in review at

IEEE Transactions on Neural Networks, 1990.

6. Kosko, B., "Adaptive Fuzzy Systems for Backing Up a Truck-

and-Trailer," with S.G. Kong, in review at IEEE Transactions on

Neural Networks, 1990.

7. Kosko, B., "Adaptive Fuzzy System for Target Tracking," with

P.J. Pacini, in review at IEEE Transactions on Automatic Control,

1990.

8. Kosko, B., "Fuzzy Associative Memories," to be submitted to

Neural Networks, 1990.



2.2 Conference ProceedinQs Papers

1. Kosko, B., "Stochastic Competitive Learning," Proc. IJCNN-90,

vol. II, 215 - 226, June 1990.

2. Kosko, B., "Comparison of Fuzzy and Neural Truck Backer-Upper

Control Systems," with S.G. Kong, Proc. IJCNN-90, vol. III, 349-

358, June 1990.

3. "Differential Competitive Learning for Centroid Estimation

and Phoneme Recognition," Proc. European Conference on neural

Netowrks, Prague, Czechoslovakia, September 1990.

3.0 NEXT-YEAR RESEARCH OBJECTIVES

In the third year of this research program we will continue to

explore the relationship between unsupervised neural network

systems and fuzzy systems.

We need to explore both the feedback dynamics of differential

competitive learning and the feedforward encoding structure of

pulse-coded DCL synapses. We have not fully exploited the delta-



modulation nature of DCL. The delta-modulation structure of DCL

suggests that digital DCL systems may provide viable highspeed

communication devices.

We need to explore the adaptive fuzzy methodology outside the

domain of control. Two promising areas are image/signal

processing and communication theory. The AFAM methodology may

allow us to estimate image-compression schemes without detailed

eigenvector math models. Communication systems depend on local

highspeed decisions made with uncertain, usually probabilistic,

information. Adaptive fuzzy systems may allow us to introduce

"intelligent communication" at modulation, spreading/depsreading,

or encoding/decoding level.
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Unsupervised Learning in Noise
BART KOSKO. NwpiN:tR It

Ahnrc-1li~e structural %tability o( real-fti unsupervised learn- since the myvriad synaptic and neuronal processes missing
ing iin fceiar Is~ k 11uat-al ,i ltii is dIciui,iratcd viill% (lie stochiastic fromntieutral (Ct, work models now. are muodeled, b)i as net
ccut u% St mcinr al 'Itabli h allos'. stb~l)%able feedback systenis hI
be twrturlbcd without ctwigisig terqaitvequlbumehio. random unmiodeled e fleets that do not a flect the st nict ure
iliese stochastic dynamical svstenm% are called random adapnire- bidirec- of (lie global network computations.
tionalassoc .at .ememory (RABANI) models. which include several pop Structural stability differs [ronm the global stability. or
ular nonadaptive and adaptive feedback nmodels. such as the Illopfield convergence to fixed points, that endows some feedback
circuit and the ART-2 model. RAIIANI networks can adapt with networks with content addrcrsable memory. and other,
different stable unsupervised learning laws. These include the signal computational properies. Glob~illy stable systems can be
llcbb, competitive, and differential ltehli laws. A new hybrid learning sniiet nta odtos ifrn nussac a
law, the differential competiuive law, which uses the neuronal signal ye- sniiet nta odtos ifrn nussae a
locit as2- a local unsupervised reinforcement niechanism. is introduced converge to dillerent limit1 States, else memory capacity is
and its coding and suatmilits% beha% ior in tecdtorsi ard and feedback net- trivial. Structural stability IS IinSenSIttvitv to small pertur-
viork% is examoined. thIis analysis is facilitated by the recent Gluck- bations. Such perturbation preserves qualitative proper-
tParker pulse-coding interpretation Of signal functions in differential
Ilebbian learning systems. The second-order behavior of RABANIf ties. In paricular. bastns of attractions tmaintain their basic
Brow nian -diffusion systems is summarized by the RABAM noise shape. In somec intuitive sense, chaos 1361 is the antithesis
suppression theorem: The mean-squared activation and synaptic ye- of structural stability. or. more accurately. structurally
locities decrease exponentially quickly to their lower bounds. the in- stable fixed-point attractors (since chaotic attractors can
stantaneous noise variances driving the system. This result is extended te & !-(zurally stable).
to the RAFIANI anncalinj model, which provides a unified framework Tefra praht tutrlSaiiyue h
from which to analyze Ceman-lwang combinatorial optimization dy- Tefra praht tutrlsaiiyue h
namical systems and continuous Boltzmann machine learning. transversality techniques of differential topology [1171, the

study of global properties of differentiable manifolds.
Manifolds A and B have nonempty transversal intersec-

1. STRUCTURAL STABILITY IN HARDWARE, BIOLOGY, tion in R" if he tangent spaces of A and B span A'at every
AND MANIFOLDS point of intersection, if locally the intersection looks like

H OW robust are unsupervised learning systems? What R. Two lines intersect transversely in the plane but not
happens if real-time synaptic mechanisms are per- in 3-space, 4-space, or higher n-space. If the lines are

turbed in real time? Will shaking disturb or prevent equi- shaken in 2-space, they still intersect. If shaken in 3-
libria? What effect will thermal noise processes, electro- space, the lines may no longer intersect. In Fig. I, man-
magnetic interactions, and component malfunctions have ifolds A and B intersect transversely in the plane at points
on large-scale implementations of unsupervised neural a and b. Manifolds BRand C do not intersect transversely
networks'? How biologically accurate are unsupervised at c.
neural models that do not model the myriad electrochem- An indirect approach to structural stability uses the cal-
tcal, molecular, and other processes found at synaptic culus of stochastic differential and integral equations 1351.
junctions and membrane potential sites? 1411. This is the approach usedl In this paper. The sto-

These questions are different way's of' asking a more chastic-calculus approach abstracts statistically relevant
general questitort: is unsupervised learrnn struciuralliy behavior fromr large sets of funct ions. The differential -to-

stabe? S ntcu ra statlit191. J421J allows globally stable polovical approach, in contrast, is concerned wt l )S
feedback systemus to be perturbed withot changing their sibfle behlavior Of all functions (Open denise sets of fune-
qualitative equtilItbrtii i behavior. Th'is increases the rel i- lions). Tbhis makes the a nal N'sis extremely abstract -and
abiliy of large scale hardware implemientat ions Of suIch calculations Cumbersotme and often impr-actical -

networks It also Increases their biological plausibility. The stochastic calculus is difficult to work with as well,
bitt ttsutal v less difficul t than transversal ity techniques.-

kirnii ript crxcvel April 10. 1)59. rr.',ser October 9). 1499~ h1iN Work The new complexity that arises in passing from systems
wssuppdihe Air t-rCc Oftice of St crinic Recsearch (AIOSR 89' of differential equations to systems of stochastic differ-

0210)1 An cairiir r vcrsron of this p..pc' was presented at the 1999 Inicina

t,,rnA Jin( (Ymtecrc tin N-tr.al Nitwofs (I J(NN 89) WAQUIP( ,,o. DC. nril equat ions is, due to thie nature of solution points. In

1Infirt x, .~ IX 2." hPis,( ;ilvcbraic equtltions, mtch as 2,% 4- 3 =4tr, points in the
I h luh- 11 11'.1Ifi .....I o Isolution space :itr iihers Soltions to differential c(lat-

A- * (A~ (7' lonsarefuntons. Solut ions to stochlastic different il
I I I t ,i Niemt,, r 5IJ; 1().S? equaltions arc rano proceste 1 4 11.

I41 9I '2 2 719011M 0 0044$01 00 1KI990 It l1l:
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AD Associativity further shrinks tic function space. Glob-
illy, neural networks associate patterns with patterns.

They estimate continuous functions. Locally, synapses arc
required to associate signals with signals. This leads to

conjunctive, or multiplicative, learning laws constrained

C by locality. This in turn leads to at least three types of
I M.anioltit .nlcrtc.1i'i'n ii hi plne i(ianifird R: ). tflicr\Co.'lifn learning laws and a new hybrid law.

1;i,,nlxc acid bi are it..vt'r... t'icni c I'. nin ('aciiold., B and C nccd The four unsupervised associative learning laws dis-
nor incrvncci if c c,C Iigehi) p.rciurhcd No poinii', are transver.al in cussed in this section are 1) the signal Ilebb learning law,
I ,lic In t J .... i bfc 2) the competitive learning law, 3) the differential Ilebb

learning law, and 4) the new hybrid law, the differential
Below we demonstrate the structural stability of many competitive learning law.

types of unsupervised learning in tie stochastic sense. The
key idea is to use the scalar-valued Lyapunov function of A. Signal llebbian Learning
globally stable feedback networks but in a random frame- The signal Ifebb learning law correlates neuronal sig-
work. Then the old Lyapunov function is a random vari- nals, not activations:
able at each moment of time i, so it cannot be minimized x
as when it was a scalar at each t. The trick is to minimize , Sx,, ) S),
its expectation, its average value, which is a scalar at 1. where the overdot indicates time differentiation, mY is the

If. FouR UNSUPURVSED ASSoCIAIV LVARNING LAWS synaptic efficacy of the directed axonal edge from the ith
neuron in field F, to the jth neuron in 'field Fr, x, and y,

The distinction between supervised and unsupervised are the respective real-valued activations or membrane
learning depends on infonnation. In pattern-recognition potentials of the connected neurons, and Si and S, here-
theory, for instance, the distinction is in terms of knowl- after abbreviated to S, and S, are the bounded monotone-
edge of class boundaries. Pattern recognition is super- nondecreasing signal functions of the connected neurons
vised if the training algorithm requires knowing the class that transduce their time-averaged potential differences
membership of the training samples, unsupervised if it into time-averaged frequencies of pulse trains, and where,
does not require it. as in all equations in this paper, scaling constants can be

A similar distinction holds in neural networks. Super- multiplied or added where desired. The logistic signal
vised learning invariably refers to deliberate gradient de- function S(x) = ( I + e-")- , with c > 0, remains the
scent in the space of all possible synaptic values. Class most popular signal function for simulations and appli-
membership information is needed to compute the nu- cations. The logistic signal function is also strictly mono-
merical error vector or error signal that guides the gra- tone increasing, since S' = dS(x)/dx = cS( I - S) >
dient descent. 0. Strict monotonicity strengthens stability results.

Unsupervised learning usually refers to the modifica- The solution to (I) is an integral equation sincc in gen-
tion of biological synapses with physically local signal eral xi and y, depend on m,,. The key component of this
information. Class membership information of training integral equation is an exponentially weighted average of
samples is not needed. These systc'ns adaptively cluster sampled patterns:
patterns into classes by, for cxample, evolving "win-
ning" neurons in a competition for activation, or by mutt ) - tI(0) 4 S,(s) S(s)e'-' ds. (2)
evolving different basins of attraction in the state space. c

We shall restrict our attention to such biologically moti-
vated learning methods, knowing that other types of un- The exponential weight is inherent in the first-order struc-

supervised learning are possible and may be of practical ture of ( I ). It produces a recency effect on memory, as in
engineering value, our everyday exponential decrease in retained informa-

Unsupervised learning law, are first-order differential tion. This well-known recency effect is tie thrust of phi-
equations that describe how synapses c,olvc in time with losopher l)avid Flume's quote: "" rhe liveliest thought still
locall' available infortmation. This information usually is inferior to the dullest sensation. " Nothing is more vivid
involves synaptic properties or neuronal signal properties, than now-

In principle, and in manmalian brains or optoclcctronic L l n
integrated circuits, other types of information may he lo-
cally available for computation, glial cells. specific and The com-petitive learning law is obtained from ( I) if tile
nonspecific hormnirc,, hJI' pond elect roinagnet ic cf- passie Icday tell" is is modulated by the appropriate
fects, or Iih pulse,. these phenomena are modeled be- local signal

low as net random parameters. For tile nionent they will M- , -- ,,, (3
be ignored. L.ocality allows asynchronous synapses to op-
erate in real time. Mathematically. it also greatly shrinks The "competitiveness'" in (3) is indirect. The a,,sunip
the function space of possible unsuipervised learning laws. tion is that neurons compete for activation in the lielid -)
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in the sense that the synmetric (distance-dependent) in-
trafield connections of F r arc laterally inhibitive: the VS(t) = y y(s)C'-,A. (6)
square symnnetic matrix Q of intrafield connecions is
positive main-diagonal and nonpositive off-diagonal, or, By recalling the form of the solution to a linear inhomo-
more generally, Q has nonnegalive blocks on its main di- geneous, first-order differential question. the signal ve-
agonal and nonpositive blocks elsewhere. Then S is a win- locitics are seen to be simiple, locally available, differ-
loss index of thejth Fr neuron's performance. In practice ences:
1391 Sj is invariably a 0-1 threshold function or steep lo- S,( = xt - S,(1) (7)
gistic function, which behaves as a threshold function.
Then (3) says learn only if win. If tlie jth unit wins, the s(t) = l(t) - (t). (8
signal pattrn S(X)= (S1(x1  . S.. (x)~ generated Thus a signat velocity has the form of a reinforcemcnt
at Fx is encoded as the jth coluni of the n-by-p connec-
tion matrix exponentially quickly. This "grandrcther signal: a pulse less the current expected frequency of
synapse" effect differs from Hebbian learning, where pat- pulses. As Gluck and Parker observe, not only are these
tern information is superimposed on all of M. Then every differences locally available, they can be computed in real

synapse participates in learning new patterns while, un- time without unstable differencing techniques.
fortunately, forgetting learned patterns. For stability purposes, we note another consequence of

Both (I) and (2) were .adied as early as the 1960's by pulse-coded signal functions. They show how Hebbian
Grossberg 1121. Kohonen 1241 and Hecht-Nielsen 1151 use learning can be a special case of differential Hebbian

the competitive law (3) statistically for unsupervised clus- learning. Suppose the Hebb product SS, in (4) is scaled

tering in their respective self-organizing map and coun- down to zero:

terpropagation networks. The p columns of M then tend mij= Illt + -s S, (9)
toward the centroids of the sampled p decision classes,
even though the underlying probability density functions This is the "classical" differential Hebb law [251-[271.

are unknown. Then substituting (7) and (8) into (9) gives

C. Differential Hebbian Learning rhj= -t j+ SA+ [x iy, - xS - yj, (10)

The differential Hebb law [251-[27], [321, [33], and its which is equivalent to the signal Hebb law (1) if and only

variants, correlates signal velocities as well as signals: if the term in braces is zero. Thus the simple differential
Hebb law (9), and of course (4) suitably scaled, reduces

i = -mi + SiSi + &A (4) to the signal Hebb law when no pulses occur, when xi(t)

where, by the chain rule = yj(t) = 0. This happens frequently. For, in any con-
nected time interval, the set v of times where pulses oc-

dSi(xi) = dSj dxi t, i. cur, {t': xi(t') = I ), has Lebesgue measure zero. (Con-

dt dxi di sider pulses at rational time points or at Cantor set points.)

If signals are locally available to synapses, so are signal This interpretation, though, would imply [38] by (5) and

velocities, at least implicitly. Since the signal function S (6) that Si = S = 0 almost everywhere, so the integrals
vitie abstatn ofimicity.e e s gna frquencties Si in (5) and (6) would have to be replaced with discreteis an abstraction of time-averaged spiking frequencies, , sums (using point-mass measures).
is often assumed nonegative. Then Hebbian synapses (1) The infrequency of unit pulses occurs while the synapse
can only grow in time. Signal velocities, of course, can
be bodh positive ard negativc. Correlated (lagged) signals mqi continually modifies its behavior. When instantaneouspulse information is not available, the synapse "fills in"
provide a local "arrow of time" that synapses can exploit with expected pulse frequencies, and hence Hebbian
1331 to encode time-varying patterns as limit cycles. Klopf learning. Since signal Hebbian learning is unconditionally
[211-1231 independently arived at a similar discrete (dif- stable (the ABAM theorem, reviewed below) in many
ference) version of (4) in his drive-reinforcement theory nonlinear dynamical systems, including popular feedback
of animal learning. neural networks, pulse-coded differential Hebbian dy-

Recently Gluck and Parker I101, 1111 showed that dif- nnical systems may be stable over a wider range of sys-
ferenitial llebbian learning becomes significantly more aiclstesaybsaleorawdrrngofy-feretia libbin lernig bcoms sinifcanly ore tern parameters than earlier velocity-acceleration stability
plausible in nervous systems if we recall that real neurons amts than eale s et.

transmit discrete pulse-coded information and we struc-

lure the signal functions Si and S, accordingly. Suppose x, D. Differential Competitive Learning
and y are pulse functions: x,(t) = I if a pulse occurs at
lime t, 0 if not, and similarly for y,(t). Then the signal The fourth unsupervised learning law is a new hybrid
frequencies 5, and .5, can be e.timated as exponentially learning law, the dilh'rential (-(mzpcttiv' law:
wcighred time averages: J,,, = JSl ,n,,). (II)

)- The idea is learn only if change. As with the competi-
S live learning law (3), the neurons in F). compete for acti-
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vation, and the nonnegative signal functions S, keep score. 1), pattern by moving in, a little farther away from x, pre-
The signal velocity S1 in (II) is a local reinfo'rcenent sumably out of regions of misclassification. This is
mechanism. Its sign indicates whether thejth neurons are achieved by a simple sign change:
winning or losing, and its magnitude measures by how in,() - c(t)lx(t) -,,()], x c D,
much. The coding and dynamical behavior of (II) call be
analyzed with the pulse-coding interpretation 1101, 1111 (14)
of signal functions and by comparison with Kohonen's I(I + I) --(-)x()
recent "supervised" adaptive-vector-quantization algo- /I(1)-t t x D

rithm 1241.K (15)
The pulse-coded differential competitive learning law

is the difference of nondifferential competitive laws: mi(t + I) in(r) for all losing neurons in Fy (16)

thii = (v - S,)S, - m,j (12) where c(O), c( I ), c(2), . . . is a slowly decreasing se-

S, - n,] SIS, - ri] (13) quence of small (c(O) < 1) learning constants. Koho-
-S -nen's "unsupervised" AVQ algorithm eliminates the

where x, is a 0-1 pulse function. Hence the standard com- punishment equation (15) and relaxes (14) by allowing

petitive learning law (3) is recovered when y, = I and S x(t) to belong to any decision class. The unsupervised

= 0. This occurs when thejth unit has just won the corn- algorithm is clearly a discrete stochastic version of the

petition for activation within Fr. competitive law (3) in vector notation. Kohonen shows

Usually in a competition there are many more losers that under appropriate statistical conditions, 'he equilib-

than winners. So suppose the jth neuron in F r is a loser at rium condition of the AVQ unsupervised-clustering al-

time t. Then y(t) = 0 holds and has held over some, gorithm occurs when the p reference vectors mi asymp-

perhaps short, past interval it', t]. Then Sj(t) = 0 (or totically arrive at the centroids of their respective decision

nearly 0) by the exponential-weight structure of (6). So classes. Kohonen next shows that the equilibrium condi-

no change, no learning. tion of the supervised AVQ algorithm is similar in struc-

Now suppose thejth unit wins in the next instant t. Then ture to that of the optimum unit-cost Bayes classifier, and

yj = I over some interval It, t" I of nonzero Lebesgue cites simulation data in support of this similarity.

measure. During this interval the exponential-weight The differential competitive law (11) can be viewed as

structure of S soon drives S toward 1, which we take as a local unsupervised approximation of Kohonen's super-

the upper bound of S. This means min quickly approaches vised AVQ algorithm. Indeed preliminary simulations of

a positively scaled version of the signal Si. (1I) in stochastic feedforward mode show similar classi-

Now suppose the jth unit goes from winning to losing. fication performance in many noise environments.
Then at first yj = 0 and S = I. As S quickly falls to zero, The pulse-coded differential competitive law (12), as

learning slows then stops when y, = S = 0. Meanwhile discussed above, can be expected to often behave as the

m, has "moved away" from the signal S,. The signal ye- competitive law (3) with 0-1 threshold signal functi ,n S.
locity &, has "punished" the jth unit. This is precisely when the competitive law has been sti iwn

Kohonen 1241 uses a sign change to punish misclassi- 1321 globally stable when embedded in the nonlineat ly-

fying prototype vectors trained with the competitive namical systems below. For this reason, we here limit ;'ie

learning law in his feedforward "supervised" adaptive stability analysis of the differential competitive law to t. .1

vector quantization (AVQ) system. In vector formulation, of the competitive law with steep signal function S,. V 0

the p reference vectors ml(t). mp(t) are the respec- simlarly limit the stability analysis of the differential Heb
tive prototypes at time t of the p decision classes D,, law(4) to the analysis of the signal Hebblaw, eventhough

D, that partition the signal space R". The p refer- differential Hebb dynamical systems are known [321, (331
ence vectors are also the p columns of the synaptic matrix globally stable in the special case that signal velocities are

M. m, = (I,, .... II,) is the fan-in of synapses of the comparable to signal accelerations.

ith neuron in Fy. All Fr neurons are engaged in winner-
take-all competition. Given a random training sample Ill. UNIOIRECTIONAL AND BIDIRECTIONAL NONLINEAR

vector x(t) presented at Fx, the Fr competition is sum- DYNAMICAL SYSTEMS

marized by finding the reference vector m,(t) closest to
x(t) in Euclidean distance: 11x - mi 11 = rin { x - mill: We study nonlinear dynamical systems described by
i = 1 ..... p . "Supervision" means we know which C'hen-Grossberg 161, 114] dynamics. In the unidirec-

decision class the random vector x was chosen from. If x tional or autoassociative case, when Fx = Fr and M =

belongs to 0,. the class represented by In, then tit is re- ATr, a neural network possesses Cohen-Grossberg dy-

warded by moving m, a little closer to x. This allows i, namics if its activation equations can b! written in the

to gradually approximate the centroid of D,. (The cen- abstract form

troid, or conditional expectation, minimizes the mean- l ]

squared-error of vector quantization 1371.) Else if x does x,=-ai(xi) b,(xi) - S,(x,)mj (17)
not belong to D, in, is punished for misclassifying x as a I
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where a,(x,) >_ 0 is an amplification function. b, is arbi- ncurohiologists. Grossbcrg 1131. 1141 observed that thc
trary so long as it keeps the integrals bounded in the Lya- shunting model (19) is naturally generalized by the cele-
punov functions below, and S, is a bounded mo'notone brated Hodgkin-Huxley membrane equation:
nondecreasing (S,' - 0) signal function. The global sta-
bility of norilcarning autoassociative systems described by c -- (V" - V,) g,, + ( V , + (V - -V

(17) is ensured by the Cohcn-Grossberg theorem 161, -(

which is abstractly equivalent-in ti sense that R" x R" (20)
= R" "-to the BAM theorem below for nonlearning het-

croassociative networks and a special case of the ABAM where V ', V. and V - are respective passive, excitatory
theorem reviewed in the next section. (sodium Na " ), and inhibitory (potassium K +) saturation

Perhaps the most important special cases of (17) are upper bounds with corresponding shunting conductances
additive and shunting networks, the popular versions of g, g7*, and g7, and where the constant capacitance c >
which are the respective Hopfield circuit [191 and the 0 scales time. The shunting model (19) becomes the mcm-
Hodgkin-Huxley membrane equation [181. Grossberg brane equation (20) if Vi = x,, VP = 0. V+ = B,. V

[141, has also shown that (17) reduces to the additive Ci, g" = A, g = S,(xi) + I7, and g7 = Sn,1 +

brain-state-in-a-box model of Anderson [11, 121 and the i 1.

shunting masking field model 171 upon appropriate change Continuous bidirectional associative ,nemories 128j-
of variables. An autoassociative system has additive ac- 1321 (BAM's) arise when two (or more) neural fields Fx
tivation dynamics if the amplification function a, is con- and Fr are connected in the forward direction, from Fx to
stant and the b, function is linear. For instance, if a, = Fy, by an arbitrary n-by-p synaptic matrix M and con-
I/C. b, = (xi/R) - 1,, Si(x,) = gi(x,) = V, and con- nected in the backward direction, from Fr to Fx, by the
stant mj = m,- = Ti = T, where Ci and R, are positive p-by-n matrix N = M r where M is the transpose of M.
constants and input Ii is constant or slowly varying rela- BAM activations also possess Cohen-Grossberg dynam-
tive to fluctuations in xi, then (17) reduces to the Hopfield ics, and their extensions:
circuit [191: = -

VT +1 = -a1 (xi)[b1 (xi) -Z Si (Y) Mij (21)xi

Grossberg [13] has shown that neurons with additive j = -aj(yj) bj(yj) - Si(xilmij (22)
dynamics saturate at their upper bounds (if they have I
them) when inputs are arbitrarily large, thus ignoring the with corresponding Lyapunov function L
relative pattern information in the input pattern (1, ....

An autoassociative network has shunting or multipli- L = - 0 +

cative activation dynamics when the amplification func-
tion ai is linear and bi is nonlinear. For instance, if ai = + S. b c ,

-x, min = I (self-excitation in lateral inhibition), and bi ")-)= (I/x,)I-Ajxj + Bj(Sj + 1i) - xi(Si + 14) -S(/, - + )(1, +ives 17) distane-depende+t1) where the functions bi and bj must be suitably constrained
C() Sm + 17)1], gives the distance-dependent (mi oke Lbudd

- mji) unidirectional shunting network: to keep L bounded.
The quadratic form in L is bounded because the signal

ir = -A,x, + (B, - x,)[S,(x,) + li+ ] functions S, and S, are bounded. Boundedness of the in-
tegral terms requires additional technical hypotheses to

19) avoid pathologies as discussed by Cohen and Grossberg
- (Ci + xi) S,(xj)m, + 17] (19) 61. For our purpose we simply assume the integral terms

are bounded.
where A, is a positive decay constant and Bi and C, are All BAM results extend to any number of BAM-con-
positive saturation constants. The first term on the right- nected fields. Complex topologies are possible and, in
hand side of k 19) is a passive decay term. The second and theory, will equilibrate as rapidly as the two-layer BAM
third terms are, respectively, positive and negative feed- system. The back-and forth flow of information in a BAM
back terms. (Strictly speaking, a,(x,) must be kept posi- facilitates natural large-scale optical implementations
tive. x, can always be translated to achieve this.) If the 1201, [281.
shunting x, Ienis in the positive and negative feedback The BAM model (21), (22) clearly reduces to the
terms are scaled to zero, (19) reduces to an additive Cohen-Grossberg model if both neural fields collapse into
model. 'rossberg also showed that shunting models do one, Fx = Fr, and the constant matrix M is symmetric (P4
not saturate when presented with arbitrarily large positive = Mt). Conversely, the BAM system, which is always
inputs. They remain sensitive to the relative pattern in- globally stable, can be abstractly viewed [301 as symme-
formation in (1, -... , /). Perhaps more important for trizing an arbitrary matrix M. For if the two BAM fields
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are abstractly concatenated into a new field z F 7  = Fx (29)-(31):
U Fr, with zero block diagonal synaptic matrix W that [
contains M and Mr as respective upper and lower blocks, -ai(xi) b,(xi)- S(x,)mi,
then the BAM dynamical system (21), (22) is equivalent [
to the autoassociative system (17).

The BAM system (21) includes additive and shunting Z >, S (xi) SA(x)n A (29)
models. Ifai = I = a., bi = x i - /i, and bJ = Y1  - Js, 

for relatively constant inputs I, and Jj, then an additive til. = -m,1, + S(x) S(x1 ) (30)
BAM 1301, 131] results: iyo = -n~i + S,(x,) S,(x,) S,(x,) (31)

, = -x, + Z S1(yJ)m, + 1, (23) with corresponding Lyapunov function L:

= y + Z S,(x,)m, + Js (24) L= - Z S, Sm, , SiSS,,J,
a a j2 j k

where again constants can be added or multiplied as de- + 1 M2

sired. More generally, if a, = -x,, a = -yj, b, = + .
(l/x)1-xi + (Bi - xi)[S,(xi) + I+J - xi. 1, and b1

=( I/y)l -ys + (Bj - Ys)lS(Y) +  Jj" I - YJJs J, then + i Zf] Z Z,, 2 (32)

a shunting BAM 1301 results: 6 i 3k2

The Lyapunov function remains bounded in the adap-
ji= -xi + (Bi - xi)[Si + 1 xi Smi + ] tive case. The new terms

(5 41..m and I> 3iZ>n' (33)
(25) a i jk4

in (32) are bounded because the solutions to (30) and (31)
. ], +are bounded since, ultimately, the signal functions Si are

y =YJ + (i - YJISi + l -yj. , . bounded.

If ai(xi) > 0 and Si > 0, and if (32) is differentiated
(26) with respect to time, rearranged, and (29), (30) are used

The shunting BAM (25), (26) reminds us that in general to eliminate terms, then L strictiy decreases along trajec-
distance-dependent competition occurs within fields Fx tories, yielding asymptotic stability (and in general ex-

and Fr. Suppose the n-by-n matrix R and the p-by-p ma- ponential convergence), since

trix S describe the distance-dependent (R =R T S = T)_ S(, _

lateral inhibition within Fx and Fy, respectively. Then the L Z - ( 1  i Z
general BAM model (21), (22) must be augmented to a

competitive BAM [29): 1 ZZ Zin2 0 (34)
3 ) A

i  -ai(xi) bi(xi) S1(y1)m, - Z S.(xk)rA.] if any activation or synaptic velocity is nonzero. The strict

A monotonicity assumption S" > 0 and (33) further imply
(27) that L = 0 if and only if all parameters stop changing: .i

= rM,i = hk = 0 for all i, j, k. All like higher order
[ ,ABAM's are globally stable.

-a(y) b1(y) - Z S,(x,)m, - S,(y)s,. The restriction to signal Hebbian learning was relaxed
1321 to allow competitive learning with (3) provided Sj is

(28) steep, and further relaxed to allow differential Hebbian
learning with (4) provided signal velocities and signal ac-

An adaptive bidirectional associative memory (ABAM) celerations agree in sign. A competitive ABAM (CA-
is a globally stable dynamical system with activation dy- BAM) results from (27), (28) if learning is governed by
namics described by (21), (22) or (27), (28) and synaptic the competitive learning law (3) and if S behaves essen-
dynamics described by a first-order learning law. The tially as a 0-1 step function. For then, upon time differ-
original ABAM 1301 restricted the choice of learning law entiation, the appropriate Lyapunov function L takes the
to the signal lebb law (I). Signal Hchb ABAM's are un- for0
conditionally globally stable, though limited in their abil-
ity to estimate continuous functions. Detter, though more L = - S ( 2i  I J S a)
costly, estimation can be gotten with higher order signal a1
"ebb ABAM's. For example, in autoassociativc notation, Z Z ,hijiSi(xi) S(y,) - mnj. (35)
the second-order signal Hebb ABAM 1321 is described by ,



50 II'1I: TRANSAC IONS ON NEUEIRAL N|-TWORKS. VOL, I. NO. I. MARCIl 199

The trick is to eliminate it,, in (34) with the competitive D E C 0 D I N G
law (3) and exploit the 0-1 threshold (stcep-sigmoid) be-

FrEoronRWAn FEEDBACK

havior of S, Then the relevant product becomes non-

negative:

,,I s - ,,,, s,(s, - 1,,) Iss, - ,nj Z 0.

- (s, )2. Sy -0 I . ,_ .

Thus both winners and losers in Fy keep L decreasing z ..

and ensure that every CABAM is globally stable. IJln A , ,,,,MEso,,M
CABAM's are topologically equivalent to adaptive res- '

onance theory (ART) systems [ 131. The idea behind ART NEURAL NETWORK TAXONOMY

systems is learn only if resonate. Resonance, though, is Fig- 2.

simply joint stability at Fx and Fr mediated by the forward
connections M and the backward connections N. When N
= M T and activation dynamics are described by (27), (28), formation by using the differential Hebb learning law (331:
ART models become CABAM models so long as learning
is described by a globally stable learning law, in partic- = -ai(xi) bi(xi)- Sm, -S e .m f (38)
ular the competitive law (3) with steep signal function S,. aic xLJ[- (38
This is the case with the recent ART-2 model 151 since
the activation (short-term memory) dynamics of Fx and Z i - Sij (39)
Fr are described by shunting equations and, in the nota- J = y)[b(Yi)

tion of Carpenter and Grossberg, the learning (long-term + ss, + (40)
memory) dynamics are described by CABAM-style com-
petitive learning laws with threshold signal functions in and the further assumptions S S& j- S where in
Fy: general (40) can be loosened to only require that signal

velocities and accelerations tend to have the same sign (as
top-down (Fr Fx):zi, = g(yj)[pi - zi] (36) in clipped exponentials). The corresponding Lyapunov

function now includes a "'kinetic energy" term to account
bottom-up (Fx - Fy):ij = g(yj)[Pi - z] (37) for signal velocities:

where g is a threshold signal function and pi is the signal L= SSjm,. - _ j my

pattern (itself involving complicated L2-norm computa-
(ions) transmitted from Fx. Equation (36) says matrix Z + I' S'(O,) bi(Oi) dO,
contains forward projections and its transpose Zrcontains
backward connections.

In contrast, the earlier binary ART-I model (41 is not + Z S'(Ej)bj(.j)dc + 2 m.
extended by the CABAM model because Weber law struc- i " "
ture is imposed on the forward "bottom-up" synaptic
projections, and thus the forward and backward connec- IV. STABILITY-CoNVERGENCE DILEMMA AND THE

(ion matrices are not related by transposition. This in part ABAM THEOREM
explains why binary inputs in ART-2 need not produce Stability and convergence are equilibrium properties.
ART-I behavior. It also suggests that the ART-2 model Stability is equilibrium in a neuronal field: (didt)F =
can in principle be similarly moaified by adding Weber 0. Convergence is equilibrium in a synaptic -web:

law structure to (36), producing an ART-2' model that is (d/dt)M = 0. Global stability is joint stability and con-

not a CABAM. vergence for all inputs and all network parameters. Pat-

These connections among unsupervised feedback dy- tern formation occurs across field Fx when it slabilizes.
namical systems are summarized by the taxonomy in Fig. The stable signals across Fx make up the formed pattern.

2 of artificial neural networks (ANN's) and placed in con- Stability is trivial in a feedforward network.
text with unsupervised feedforward adaptive vector quan- Global stability is difficult to achieve in unsupervised
tizers and the extremely popular supervised feedforward feedback networks. After all, most feedback systems are

gradient-descent networks: unstable. Global stability requires a delicate dynamical

The more general RABAM model is developed below, balance between stability and convergence. Achieving

Finally, for completeness, we state the form of ABAM such a balance is arguably the central problem in analyz-

systems that adapt (and activate) with signal velocity in- ing, and building, unsupervised feedback dynamical sys-
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temis. The chief difliculty stems from thc dynamical asym-
metry between neural and synaptic fluctuations. Neurons = -a,()0 b0() - Z;(x,)m1J (42)

fluctuate orders of magnitude faster than synapses: learn-

ing is slow. In real neural systems, neuronal fiuctation mt = - + S,(x,) S,( ,)) (43)
may be at the millisecond level, while synaptic fluctuation and a, > 0 and aj > 0, and S, and S, are bounded
may be at the second or even minute level, monotone increasing (S; > 0 and S' > 0) signal func-

The stability-convergence dilemma arises from the tions. At equilibrium, all activation and synaptic veloci-
asymmetry in neuronal and synaptic fluctuation rates. The tics arc zero.
dilemma unfolds as follows. Neurons change faster than Proof. Consider the global Lyapunov function L:
synapses change. Patterns form when neurons stabilize,
when (d/dt)Fx = 0 and (d/dt)Fy = 0. The slowly
varying synapses M try to learn these patterns. Since the L = - Z Z SgSq + 0
neurons are stable for more than a synaptic moment, the
synapses begin to adapt to the neuronal patterns-learning + m ,
begins. So (ddt)Fx = 0 and (d/dt)Fy = 0 imply + - 0 S(oi) b,(cj) dj + 2 Z >1 ,n . (44)

(d/dt)M t 0. Since there are numerous feedback paths
from the synapses to the neurons, the neurons tend to Then time differentiation and collection of like terms gives
change state. So (d/dt)M *t 0 implies (d/dt)Fx :; 0
and (d/dt)Fy * 0. Learning tends to undo the very sta- L = -

b i 
- Sjm ij J

- S>{b, - Sim,,

bility patterns to be encoded, and hence the dilemma. In L
summary, for two fields of neurons Fx and Fy connected - -, I mJSSj - miJ. (45)
in the forward direction by M and in the backward direc- ( 4

tion by Mr , the stability-convergence dilemma has four Then, using the positivity of a, and aj, the terms in braces
parts, described as follows. can be eliminated with the respective equations (41)-(43).

A. Stabity-Convergence Dilemma This proves that L is strictly decreasing along trajectories:

I) Asymmetry: Neurons in Fx and F r fluctuate faster LSt S (4.. . ._i Z 0_ EZM (46)

than the synapses M. i a i  j aj y I j
d d

2) Stability: d Fx = 0 and d Fr = 0 (pattern forma- for any activation or synaptic change. Since S" > 0 and

tion). dt dj> 0, L = 0 if and only ifi= thij = 0 for all i

d d d andj. Q.E.D.

3) Learning: -F x = 0 and -Fy = 0 - -M * 0. The strictly inequality sign in (46) yields asymptotic
di dr dt stability, which ensures that trajectories end in equilib-

4) Undoing: -M 0 - dF5 * 0 and dFy # 0. rium points, not merely near them. Asymptotic stability
di d dt also ensures that the eigenvalues of the Jacobian matrix

The ABAM theorem 1321 provides one resolution of the of the system (41)-(43) have nonpositive real parts near
stability-convergence dilemma. The adaptive resonance equilibria. A nondegenerate Hessian further ensures that
concept provides another. Though as discussed in the pre- the real parts of the eigenvalues are negative. Then 1161
vious section, the recent ART-2 instantiation of the con- the nonlinear system (41)-(43) converges exponentially
cept is a CABAM. The ABAM theorem ensures the global quickly as if it were linear.
stability, the joint stability and convergence, of dynami-
cal systems with activation dynamics described by (21) V. RANDOM ADAPTIVE BIDIRECTIONAL ASSOCIATIVE

and (22) and that learn according to the signal Hebb learn- MEMORIES

ing law (I). The extensions to competitive and differential Random adaptive bidirectional associative memory
Hebbian learning (and thus differential competitive learn- (RABAM) models are everywhere perturbed by Brownian
ing) discussed above all require more assumptions than diffusions. The differential equations in (41)-(43) now be-
learning with the signal Hebb law, which requires none. come stochastic differential equations, with random pro-
Since the ABAM theorem is the starting point for the ran- cesses as solutions. In the simplest case, Brownian dif-
dom-process extension to the RABAM theorem below, we fusions are simply added to deterministic differential
review its statement and proof. equations. In the more general case adopted here, every

B?. A11AM Theorem activation and synaptic variable represents a separate sto-
chastic process. The stochastic differential equations re-

Ever, signal llebb BAM is asymptotically stable, where late the time evolution of these stochastic processes.
the network dynamics arc described by Brownian diffusions, or "noise" processes, are then

added to the stochastic differential equations. In principle
x, = -a,(c,) b,(x,) - Z-S,(y,),n, (41) this Ito calculus approach need not preserve the chain rule

of deterministic differential calculus. The final section.
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though. discusses why for RABAM models the classical additive activation modcls. such additive activation noise
chain-rile relationships still hold. can be included in the noise terms n, and n,

let B,. lB. and BY be Brownian motion (inependcnt Will so much noise destabilize the system? So much
Gaussian increment) processes 1351. 1411 perturbing the noise with so much feedback would seem to promote
ith neuron in Fx , the jth neuron in Fy, and the synapse n,,, chaos, especially since the network dimensions n and p
respectively. The Brownian motions are allowed to havc can be arbitrarily large. Ilow can stable learning occur?
tine-varying diffusion parameters. Then the diffusicn The RABAM theorem ensures stochastic stability.
RABAM is described by (47)-(49): Nonlinear interactions suppress noise and suppress it ex-

ponentially quickly. In effect, RA13AM equilibria are

d -a,(x,) b,(x,) - S,(yJ)mj dt + dl?, (47) ABAM equilibria that randomly vibrate. The diffusion pa-
x J rameters, or the noise variances, control the range of vi-

bration. Average RABAM behavior is just ABAM behav-

dy =-a(y) j~j) Si(xi)tn1] di + d,(48) ior. Since no ise perturbations do not destroy equilibria,
the RABAM theorem says that unsupervised learning is
structurally stable in the stochastic sense. The result ap-

din,, -rn,j dt + Si(xi) S,(y,) dt + dB. (49) plies with equal force, though with less theoretical inter-

The signal Hebb diffusion law (49) can be replaced with est, for unsupervised learning in feedforward networks.
the competitive diffusion law The RABAM theorem can be motivated with a simple

dnj = Si(y,)[Si - njdt + dBij (50) thought experiment or, better, a few hand calculations.
= [- Consider a discrete additive BAM with fixed matrix M.

if Si is sufficiently steep. Or it can be replaced with dif- Find its bipolar fixed points in the product space { -1.

ferential Hebb or differential competitive diffusion laws if I } X { - i, i ) P. Now add a small amount of zero-mean

tighter constraints are imposed. For simplicity, we shall noise to each memory element mi. Since a discrete BAM

formulate the RABAM model in the signal Hebb case signal function is a threshold function, it is unlikely that

only. The extensions to competitive and differential learn- more than very few neurons, if any, change state differ-

ing proceed exactly as the above extensions of the ABAM ently during iterations than they did before. It is even less

theorem. All RABAM results, like all ABAM results, also likely that they will do so as n and p increase. The same

immediately extended to high-order systems of arbitrarily fixed points tend to be reached, and tend to persist once

high order. reached. This corresponds to adding noise at the synaptic

The RABAM model can be restated in more familiar, level. Now repeat the computation, but also add zero-

less rigorous, "noise notation." Intuitively independent mean noise to each neuron's activation at each iteration.

zero-mean noise is added to the ABAM model. The sto- Then repeat this computation, adding new noise to the

chastic differential equations then describe the time evo- matrix M each time. This allows the synaptic noise pro-

lution of network "signals plus noise." This implicitly cesses to be "lower" than the neuronal noise processes.

means that the noise processes are independent of the Again the threshold signal functions make it unlikely that

nonlinear "signal" processes. For emphasis, though, we the signal patterns will change significantly, if at all, dur-

explictly make the weaker assumption that the noise pro- ing iterations or in equilibrium.

cesses are uncorrelated with the "signal" processes. We
further assume that the noise processes have finite vari- A. RABAM Theorem
ances, though they may be time varying. Then the noise The RABAM model (47)-(50), or(5l)-(55) Is globallyRABAM model is described by the stochastic differential TeRBMmdl(7-5) r( )(5 sgoal
equations stable. If signal functions are strictly increasing and am-

plification functions a, and a, are strictly positive, the RA-
1BAM model is asymptotically stable.

-a,( ,(x,) - X S(y)m, + n, (51) Proof. The ABAM Lyapunov function (44) is now a
J random process. At each time t, L(t) is a random vari-

able. We conjecture that the expected ABAM Lyapunov

-a( y)l b,(y1,) - n, (52) function E(L) is a Lyapunov function for tle RABAMsys-
, (5 tern, where the expectation is with respect to all random

parameters:
n1,- S,(x,) S(y) + n (53)

E(n,) E (n,) = E(n,,) -0 (54) E(L) ." Lp(X. 1.M)dXdYdM. (56)
) (Recall that each activation and synaptic parameter rep-V(,, n ", < ao 0 < 00. a< Co. (55)

resents a random process separate from the random pro-

Noise can be added within the general b, and bj terms, cess got simply by adding noise to a deterministic vari-

perhaps reflecting random input signals. A separate anal- able.)
ysis 1341 shows that additive input noise can be accom- The proof strategy is to replace the time derivative of

modated for additive and shunting activation models. For the expectation with the expectation of the time derivative
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of the ABAM Lyapunov function, which we calculated havior depends fundamentally on the variances of the ad-
aboc. Technically we need to assume sufficient smooth ditive noise processes. Observe that the zero-mean as-
ness conditions on the RABAM model to bring the time sumption (54) implies that the time-varying "variances"2 2 2arderivative inside the multiple integrals in (56). This as- a, 2 2, 2and tic respective instantaneous mean-

sumption adds little burden. Then squared "noises" E(n ), E(n ), and E(n). since in gen-
| (L) = E(L) and by (45) eral V(x) = E(x2 ) - E2(x).

Observed RABAM second-order behavior consists of
the observed instantaneous mean-squared velocities

EL Siki b- S^, E( 4), E(y]), and E(th ). The mean-squared velocities
measure the magnitude of instantaneous RABAM change.
They are at least as large as the underlying instantaneous

+ S"bJ Sim.] "variances" of the activation velocity and synaptic ve-
I locity processes, since, for example

[ - z I- + SSI E( -)> E(x2 ) - E2(.i) = V(x3. (59)

12 Intuitively the mean-squared velocities should depend
E - 1 on the instantaneous "variances" of the noise processes

S~ab - . Jm in (51)-(53). The more the noise processes hop about their
means, the greater the potential for the activations and

[a S^, ]synapses to change state. But this intuition seems to run

1b- .counter to the structural stability established by the RA-
BAM theorem. Surely, it seems, if the magnitudes of the

, [-too + S Sj noise fluctuations grow arbitrarily large, there comes aI )- point-and perhaps a point quickly reached in the midst

of massive noisy feedback-where the RABAM system
+ E niSi b - Sjm transitions from stability to instability.

,Il .The RABAM noise suppression theorem guarantees that
no noise processes can destabilize a RABAM if the noise

b- Sim processes have finite instantaneous variances. (Cauchy
+. E -jS[bj- Si noise, for example, in theory could destabilize a RABAM

since it has infinite variance. In practice, though, even
- i E{nJ[ -mij + SiS] (57) Cauchy variance is finite, and so it will never destabilize

j )a RABAM.) Preliminary simulations [431, where noise
upon eliminating the activation and synaptic velocities in fluctuations are many orders of magnitude greater than
(57) with the RABAM dynamical equations (5 1)-(53) activation and synaptic fluctuations, have confirmed this

surprising prediction. In some sense noise cannot beat
E[L-AaM + Y_ E(n,) ES" b, Sm U RABAM stability. Moreover, the RABAM noise suppres-

AM " sion theorem ensures that noise will be "quenched," to

use Grossberg's term 1131, exponentially quickly in most
+ E(n) E S S, cases.EnES' bJ - Sn) To prove the RABAM noise suppression theorem, we

J-m + SS(58) must make explicit how RABAM instantaneous mean-
- E(n) E[ - Ssquared velocities depend on the underlying instantaneous

by the uncorrelatedness (independence) of the "signal" noise variances. The following lemma grounds the intui-

and additive noise terms in the RABAM model, and by tion that observed second-order behavior-the instanta-

the facts that S" and 5' are nonnegative functions of xi and neous mean-squared velocities-involves at least as muchfluctuation as is found in the noise itself.
y, respectively, and ai and aj are nonnegative essentially
arbitrary functions (so S,' = a, and Sl = a possible) Lemma:

= e[.,! E(,i') _ a E( 2) E( _) a'. (60)

by (54). So E(L) f- 0 or k(L) < ( along trajectories Proof. All three inequalities arc proved by squaring
according as -AAM ! 0 or LARAM < 0. Q.E.D. both sides of the RABAM equations (5l)-(53), taking ex-

pectations, and using (54) and the fact that the noise is
VI. NOISE-SATURATION DILEMMA AND TIlE RABAM uncorrelated with the additive nmnlinear "signal" terms.

NOISE SUPPRjSSION TIitOrEM Q.E.D.
How much do RABAM trajectories and equilibria vi- It is not true that the squared velocity processes are

brate? To answer this question we need to examine the never less than the squared noise processes at every in-
second-order behavior of the RABAM model. This be- stant. It is only true on average at every instant.
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Grossberg's noise-aturalimi din'ima 1131 ImlOtivates tivation noise? What about noise Compounded by fccd-
the use of the tern "noise suppression" in the RABAM back? flow do we know such pervasive noise will not pre-
corollary below. Tie noise-saturation dilemma asks how vent an ART system front adaptively resonating, or ruin
neurons can havc an effective infinite dynamical range an adaptive-resonance equilibrium once achieved?
when they operate between upper and lower bounds and The RABAM noise suppression theorem is an alterna-
yet not treat small input signals as noise: 'If the x, are tive resolution of the noise half of the noise-saturation
sensiive to large inputs, then why do not small inputs get dilemma. It guarantees that second-order behavior in RA-
lost in internal system noise? If the xi are sensitive to small BAM systems is as good as it can be: mean-square vcloc-
inputs, then why do they not all saturate at their nmaximum ities decrease exponentially quickly to their lower bounds.
v'alues in response to large inputs?" 1141 This vexing and As the above lemma shows, these lower bounds are just
ubiquitous dilemma, it even confronts the salesperson who the underlying driving noise variances. Thus the observed
trys to balance her presentation between "'little" and fluctuations, the mean-squared velocities, track the unob-
"big" customers, is the supreme motivator behind Gross- served noise fluctuations. Unaided feedback intuitions
berg's shunting-model perspective of neural networks, might easily lead to the prediction that, in light of the

Grossberg resolves the saturation half of the dilemma lemma, mean-squared velocities may tend toward infin-
by showing 1131, as mentioned above, that shunting ity, especially for widely fluctuating noise processes.
models remain sensitive to relative pattern information
over a wide range of inputs. He also shows that additive A. RABAM Noise Suppression 77eorein

models quickly saturate to upper bounds for large inputs. For strictly increasing signal functions S, and S., posi-
Indeed this saturation invariance result is arguably Gross- tive amplification functions a,, and nondegenerate Hes-
berg's greatest achievement. Besides giving infonnation- sian conditions: as the RABAM system (51)-(55) con-
processing insights into the global dynamics of Hodgkin- verges exponentially quickly, mean-squared activation
Huxley type networks, it also drives Grossberg's concep- and synaptic parameters decrease to their lower bounds
tion and implementation of ART behavior, and is at the exponentially quickly:
heart of his recent vision theory. On the other hand, as E(i) I a, E( ,) , 2 E(,h) 1 (61)
Carver Mead and other neural VLSI designers have ob-
served, it is well known that a simple logarithmic trans- Proof. The proof uses the asymptotic convergence es-
duction of local input light intensity into electric potential tablished in the above RABAM theorem for the monoton-
in the visual system achieves in one stroke both sensitivity icity and positivity assumptions and the lower bound on
to input light intensities over many orders of magnitude mean-square velocities established in the lemma (60).
and "discounts the illuminant" [ 141 by equating voltage Then
differences to logarithms of intensity ratios. E(L) = E(L)

Grossberg's resolution of the noise half of the noise-
saturation dilemma is far less satisfactory. Grossberg [131 E ' s~ n, - k, (ni -...

argues that noisy patterns are uniform input patterns and =+ 
that, for a particular small threshold value, uniform noise [ a as

is "suppressed" by all neurons in the field shutting off.
Besides the dependence on a specific noise threshold, this - - i,,(n-

argument is objectionable on at least two counts. First,
noise permeates all parameters and all signals and cer- by using the positivity of the amplification functions and
tainly need not be uniform. Grossbcrg admits this in his (51)-(53) to eliminate the terms in braces in (57) in the
above description of the noise-saturation dilemma when proof of the RABAM theorem
he asks why small inputs do not "get lost in internal sys- 1

tent noise." System noise makes everything "jiggle," in- =EF IS i2 S, 2 ill
cluding relative input pattern values. This is the noise [ , Ja, ,

modeled by the additive noise processes in the RA13AM
equations (S )-(53) or, ,ore realistically, by the additive 4 E , S 1
diffusion processes in ihe diffusion RABAM equations 1 a, ' a, j V 'n J
(47)-(49).

Second, shutting off neurons to suppress noise seems
akin to curing the patient by killing him. The goal is to -En

continue "'computing" as accurately as possible no mat-
tcr Itow noisy the environment. Blackground noise can be E(n) FI , Sv lhiglt irt fee(lback systems where noise call multiply by re- S,
circulating. In fairness, Grossberg 1141 argues that special
classes of signal functions, especially signtoid signal - > lE(n,,) El -in,, 4 S,S,]
functions, help quench pattern noi:c by contrast-enhanc
ing input signals. Signal function nonlinearities surely S 1

help suppress this special occurrence of noise. But what 4 E n, 4 +1 + ,' 
about synaptic noise'. What about joint synaptic and ac- ,a
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by using (5l)-(53) again to eliminate activation and syn- gous to the convergence in distribution found in central
aptic velocitic :n the second expectation above, rearrang- limit theorems). The result is not true' for convergence
ing, and, as in the proof of the RABAM theorem, using with probability one or even convergence probability.
the uncorrelatedness of noise and "'signal terms in (51)- There is still some probability that the system slate will
(53) as discussed above to obtain (59) bounce out of global or near-global minima as "cooling"

S1 finishes.

-E - (i2 - n) - E ( , ) - ) We now extend the RABAM theorem and RABAM

jai J a, noise suppression theorem to include simulated annealing

- , (E(m) - o2 ) (62) in the general Geman-ltwang sense. For this we intro-
duce the activation "temperatures" or annealing sched-
ules 7() and T(t) and the synaptic schedules T,(t). The

by the zero-mean noise assumption (54) and rearrange- temperatures are nonnegative deterministic functions. So
meat. The lemma ensures that the double sum is nonneg- they can be brought outside all expectations in proofs.
ative. The RABAM theorem establishes that the Lyapu- The RABAM annealing model is more general than the
nov function E(L) strictly decreases along trajectories, Geman-Hwang gradient model, and vastly more general
and thus trajectories end at equilibrium points and arrive than popular additive-activation annealing models, be-
there exponentially quickly. This, together with the pos- cause learning is permitted and because learning too can
itivity (and well behavedness 1341) of the weight ratios be annealed, although perhaps at a different rate than ac-
S'/a, yields the equilibrium conditions: tivation annealing. The RABAM annealing model is de-

E = g, E(y ) = a, E(rh?) = o. (63) fined by scaling the diffusion differentials in (47)-(49)with the square root of the corresponding annealing
This implies (62). Q.E.D. schedules or, in the noise RABAM, by replacing (51)-

The RABAM noise suppression generalizes the equilib- (53) with (64)-(66):
rium conditions obtained in the ABAM theorem in the
asymptotic-convergence case. For if the instantaneous [1 ,

.'variances" in (63) are zero, then [381 the squared ve- iq = -ai b, - . SmJ + v[ n. (64)

locities, and thus the velocities, are zero almost every-
where. The zero-variance case is the deterministic case.1
The sigma-algebra of the probability space is degenerate; yj = -aj bj - . ij + fn (65)
it only contains the whole space and the null set. Thus the

activation and synaptic velocities are zero everywhere, as in = -mi + SS + ifin- (66)
in the strict ABAM case. Also note that throughout the where again (67) can be replaced with the other unsuper-
proofs of the RABAM theorem and the RABAM noise vised learning laws discussed above with appropriate ad-
suppression theorem, the synaptic terms are easier to work ditional constraints.
with, and the results are "cleaner," because they do not
possess nonlinear signal and amplification terms. We re-
call again that the above two theorems are also valid for
suitably randomized competitive, differential Hebb, and The RABAM annealing model is globally stable, and
differential competitive learning laws under appropriate asymptotically stable for monotone increasing signal
conditions. functions and positive amplification functions, in which

case the mean-squared activation and synaptic velocities
VII. RABAM ANNEALING AND Till ITO- decrease to their temperature-scaled instantaneous "vari-

STRATONOVIC11 STOCHASTIC CALCULUS ances" exponentially fast:

Gradient systems are globally stable. The above theo- E(i4) I Tio', E(j,]) I To2 , E(,ih,) I TJo.

rems are an extension of this general Lyapunov fact. For (67)
example, Cohen and Grossberg 161 showed that their sym-
metric nonlearning autoassociative system can be written Proof Tile proof largely duplicates the proofs of the
in pseudogradient form for monotone increasing signal RABAM theorem and RABAM noise suppression thco-
functions and positive amplification functions. rem. Again E(L) is a sufficiently smooth Lyapunov func-

Geman and Hwang [8] recently showed that stochastic lion that allows time differentiation of the integrand. When
gradient -vstems with scaled additive Brownian diffusions the diffusion or noise RABAM annealing equations are
(noise) perform simulated annealing in a weak sense. The used to eliminate activation and synaptic velocities in the
gradient is formed from a cost function to be searched by time-differentiated Lyapunov function, the resulting tcm-
scaled random hill climbing. If the noise is initially scaled perature functions that occur can be factored outside all
high enough (to a physically unrealizable size), then grad- expectations. The nonnegativity of the temperature func-
ually decreasing the nonnegative "temperature" T(1) tions keeps them from affecting the structure of expanded
scaling factor can bounce the system state out of local time derivative of E(L). The random weight functions
minima and trap it in global minima. The convergence, S'/a are assumed sufficiently well behaved to keep the
though, must proceed exponentially slowly and is only expectations in which they occur nonnegative. The above
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the nican-squared velocity E(x 2 ) is bounded below by nealing schedules). The extra term involves the derivative

7'(,. Then. (62) is generalized to of this constant with respect to the corresponding random

I 1 activation or synapse. Thus RABAM models enjoy the

(L) = - - n,) best of both stochastic-calculus worlds. They maintain the
familiar chain rule of Stratonovich stochastic dynamical

systems and inherit the beter-explored properties of to

- Tn stochastic dynamical systems. For instance, all RABAM
S %]solution processes are Markov processes. This promises

- >- > (l( ,) - ,). (68) a new approach to nonlinear stochastic optimal estimation
,J and control.

Q.E.D. VIII. CONCLUSIONS

The RABAM annealing theorem is a nonlinear and con- The RABAM model unifies many popular fecdforward

tinuous generalization of Boltzmann machine learning and feedback unsupervised learning systems and extends

1401, provided learning is Hebbian and very slow. The them to the more realistic, and more complex, random

Boltzmann machine uses discrete symmetric additive au- process domain. Unsupervised learning is structurally sta-

toassociative dynamics. Binary neurons are annealed dur- ble for wide families of nonlinear feedback dynamical

ing periods of Hebbian and anti-Ilebbian learning. Here systems. This holds for the popular signal Hebb and com-

Hebbian learning corresponds to (66) with 7'j(t) = 0 for petitive learning feedback systems under quite general

all t. Anti-Hebbian learning further replaces the Hebh conditions. It ho!ds to a lesser extent for the largely unex-

product SSj in (66) with the negative product -SiS. Anti- plored signal-velocity learning feedback systems that

Hebbian learning (during "free-running" training 1401) adapt with differential Hebb or differential competitive

can in principle destabilize a RABAM system. This is less laws. Pulse-coded 110), ti 11 signal functions augment the

likely to occur, though, the slower the anti-Hebbian learn- class of feedback systems that can stably learn with the

ing. (The activation terms in the time derivative ol E(L) differential Hebb and differential competitive laws, since

stay negative and can outweigh the possibly positive anti- in this case they give back, respectively, signal Hebb and

Hebbian terms, even if learning is fast.) Incidental insta- competitive learning behavior much of the time. The

bility perhaps is not even a problem in this phase of an- pulse-coding framework also promises new engineering

nealing, since the intention is to undo some of the learn- approaches to implementing adaptive networks, perhaps

ing in the "environmental" annealing phase. The with sinusoidal techniques, as well as suggesting new

fundamental distinction between unsupervised RABAM roles for signal-velocity synaptic mechanisms in real

learning and temperature-supervised annealing learning is neural systems. The feedback in these stable dynamical

how noise is treated. Simulated annealing systems search systems can always be eliminated to produce unsuper-

or learn with noise. Unsupervised RABAM systems learn vised feedforward systems that stably learn with Hebbian,

despite noise. During "cooling," the continuous anneal- competitive, or signal-velocity learning laws.

ing schedules define the flow of RABAM equilibria in the The stability of RABAM models yields the structural

product state space of continuous nonlinear random pro- stability of ABAM models. From an engineering perspec-

cesses. Equation (67) implies that no finite temperature tive, this means we can more confidently build large-scale

value, however large, can destabilize a RABAM. ABAM networks with electrical, optical, electrooptic, and

Finally, the proofs of the above RABAM theorems re- perhaps other (molecular, fluid, plasma, polymer, etc.)

peatedly use the familiar chain rule of differential calcu- devices.
lus. In general, the chain rule does not apply to systems For the neurobiologist, the structural stability of ABAM

of nonlinear stochastic differential equations, at least not models suggests that at least some of the consistent criti-

in the general case where each nonlinear parameter is it- cism that neural models are "unrealistic" is unfounded.

self a stochastic process. This is the general setting for The many intricate neuronal and molecular properties that

the Ito calculus. One exception is the related Stratonovich the neurobiologist studies, and finds missing in neural

calculus, which defines a stochastic integral (an integral network models, are modeled in RABAM systems as ran-

defined with respect to a random measure 1411 with as dora unmodeled effects. The RABAM noise suppression

lightly different partitioning of the time interval. The Stra- theorem says these unmodeled effects are ignored by the
tonovich calculus includes the classical chain rule, though network's global computations almost as quickly as they

in general at the expense of possessing non-Markovian are encountered. Like many quantum-level effects in elec-

soluton processe ws that. with probabilt trical devices, these unmodele effects simply do not af-
Maybck 1351 show lity one. tile Ito fect the structure of global network computations-so long

stochastic differential equals the Stratonovrch chistic ti% they arc oet ri (0oi effects.
differential plus a term involving the nonlincar random How plausible is this'? Some unmodeled eflects of

scaling factor on the underlying Brownian diffusion. [lhe course depend on neuronal and synaptic behavior and so

two differentials and corresponding integrals arc equal are not accurately modeled as independent noise pro-
when this extra term is zcro. This is fortunatcly always cesses, though perhaps central-limit (Gaussian) effects
true for RABAM systems since noise terms arc scalcd with emerge from the interaction of many such processes.
constants or sequences of constants (deterministic an- Many correlated effects can also he incorporated as slowly
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So far as the laws of mathematics refer to reality, they are not certain. And so far as
they are certain, they do not refer to reality.

Albert Einstein

Fuzziness is explored as an alternative to randomness for describing uncertainty. The new sers-as-points
geometric view of fuzzy sets is developed. This view identifies a fuzzy set with a point in a unit
hypercube and a nonfuzzy set with a vertex.of the cube. Paradoxes of two-valued logic and set theory,
such as Russell's paradox, correspond to the midpoint of the fuzzy cube. The fundamental questions of
fuzzy theory-How fuzzy is a fuzzy set? How much is one fuzzy set a subset of another?-are answered
geometrically with the Fuzzy Entropy Theorem, the Fuzzy Subsethood Theorem, and the Entropy-
Subsethood Theorem. A new geometric proof of the Subsethood Theorem is given, a corollary of which
is that the apparently probabilistic relative frequency nJN turns out to be the deterministic subsethood
S(X* A), the degree to which the sample space X is contained in its subset A. So the frequency of
successful trials is viewed as the degree to which all trials are successful. Recent Bayesian polemics
against fuzzy theory are examined in light of the new sets-as-points theorems.

INDEX TERMS: Probability Theory, fuzzy set theory, fuzzy subscthood, geometry of fuzzy sets.

I. FUZZINESS IN A PROBABILISTIC WORLD

Is uncertainty the same as randomness? If we are not sure about something, is it
only up to chance? Do the notions of likelihood and probability exhaust our
notions of uncertainty?

Many people, trained in probability and statistics, believe so. Some even say so,
and say so loudly. These voices are often heard in the Bayesian camp of statistics,
where probability is viewed, not as a frequency or other objective testable
quantity, but as a subjective state of knowledge.

Bayesian physicist E. T. Jaynes says 6 that

any method of inference in which we represent degrees of plausibility by real numbers, is necessarily
either equivalent to Laplace's [probability], or inconsistent.

He claims physicist R. T. Cox3 has proven this as a theorem, a claim we examine
below.

More recently, Bayesian statistician Dennis Lindley' 3  issued an explicit
challenge:
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probability is the o.ily sensible description of uncertainty and is adequate for all problems involving
uncertainty. All other methods are inadequate.

Lindley directs his challenge in large part at fuzzy theory, the theory that all
things admit degrees, but admit them deterministically. This article accepts the
probabilist's challenge from the fuzzy viewpoint-admitting but ignoring other
approaches to uncertainty, such as Dempster-Shafer belief function theory-by
defending fuzziness from new geometric first principles and by questioning the
reasonableness and the axiomatic status of randomness. The new view is the sets-
as-points view t of fuzzy sets: A fuzzy set is a point in a unit hypercube and a
nonfuzzy set is a corner of the hypercube.

There are conceptual and theoretical differences between randomness and
fuzziness. Some can be illustrated with examples. Some can be proven with
theorems, as we show below.

There are also many similarities. The chief, but superficial, similarity is that both
systems describe uncertainty with numbers in the unit interval [0, 1]. This
ultimately means that both systems describe uncertainty numerically. The struc-
tural similarity is that both systems combine sets and propositions associatively,
commutatively, and distributively. The key distinction concerns how the systems
deal simultaneously with a thing A and its opposite A".

Questions raise doubt, and doubt suggests room for change. So to commence
the exposition, consider the following two questions, one fuzzy and the other
probabilistic:

i) Is it always and everywhere true that A c A'= 0?
ii) Who can derive the conditional probability operator

P(B A)= P(A n B)9
P(A)

The second question may appear less fundamental than the first question, which
asks whether fuzziness exists. The Entropy-Subsethood Theorem below shows that
the first and second questions are connected: How fuzzy a fuzzy set A is can be
measured by how much the superset A u Ac is a subset of its own subset A r) Ac, a
paradoxical relationship unique to fuzzy theory. In contrast, in probability theory
this state of affairs is impossible (has zero probability): P(An)A'j AuA')=
P(0fX)=0, where X is the sample space or "sure event" and the empty set 0 is
the "impossible event".

The conditioning or subsethood in the second question is at the heart of
Bayesian probabilistic systems. The absence of a first-principles derivation of
P(BIA) in itself may be acceptable. One simply agrees to take the ratio
relationship as an axiom. The problem is that the new sets-as-points view of fuzzy
sets derives its conditioning operator as a theorem from first principles. The
history of science suggests that systems that hold theorems as axioms continue to
evolve.

The first question asks whether the law of noncontradiction-one of Aristotle's
three "laws of thought" along with the laws of excluded middle, A U A'= X, and
identity, A = A--can be violated. Set fuzziness occurs when, and only when, it is
violated. Classical logic and set theory assume that the law of noncontradiction,
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and equivalently the law of excluded middle, is never violated. That is what makes
the classical theory black or white. Fuzziness begins where Western logic ends.

2. RANDOMNESS VS. AMBIGUITY: WHETHER VS. HOW MUCH

Fuzziness describes event ambiguity. It measures the degree to which an event
occurs, not whether it occurs. Randomness describes the uncertainty of event
occurrence. An event occurs or not, and you can bet on it. At issue is the nature of
the occurring event: whether it itself is uncertain in any way, in particular whether
it can be unambiguously distinguished from its opposite.

Whether an event occurs is "random". To what degree it occurs is fuzzy.
Whether an ambiguous event occurs-as when we say there is 20 % chance of light
rain tomorrow-involves compound uncertainties, the probability of a fuzzy event.

In practice we regularly apply probabilities to fuzzy events: small errors, satisfied
customers, A students, safe investments, developing countries, noisy signals, spiking
neurons, dying cells, charged particles, nimbus clouds, planetary atmospheres,
galactic clusters. We understand that, at least around the edges, some satisfied
customers can be somewhat unsatisfied, some A students might equally be B+
students, some stars are as much in a galactic (luster as out of it. Events can more
or less smoothly transition to their opposites, making classification hard near the
midpoint of the transition. But in theory-in formal descriptions and in text-
books-the events and their opposites are black and white. A hil! is a mountain if
it is at least x meters tall, not a mountain if it is one micron less than x in height.
Every molecule in the universe either is or is not a pencil molecule, even those
hovering above the pencil's surface.

Consider some further examples. The probability that this essay gets published
is one thing. The degree to which it gets published is another. The essay may be
edited in hundreds of ways. Or the essay may be marred with typographical
errors, and so on.

Question: Does quantum mechanics deal with the probability that an unambi-
guous electron occupies spacetime points? Or does it deal with the degree to which
an electron, or an electron smear, occurs at spacetime points? Does JqIJ2 dV
measure the probability that a random-point electron occurs in infinitesimal
volume dV? Or 2 does it measure the degree to which a deterministic electron
cloud occurs in dV? Different interpretation, different universe. Perhaps "en
existence admits degrees.

Suppose there is 50% chance that there is an apple in the refrigerator (electron
in a cell"2 ). That is one state of affairs, perhaps arrived at through frequency
calculations or a Bayesian state of knowledge. Now suppose there is half an apple
in the refrigerator. That is another state of affairs. Both states of affairs are
superficially equivalent in terms of their numerical uncertainty. Yet physically,
ontologically, they are distinct. One is "random", the other fuzzy.

If events are assumed unambiguous, as in balls-in-urns experiments, there is no
fuzziness. Only randomness remains. But when discussing the physical universe,
every assertion of event ambiguity or nonambiguity is an empirical hypothesis.
This is habitually overlooked when applying probability theory. Years of such
oversight are perhaps responsible for the deeply entrenched sentiment that
uncertainty is randomness, and randomness alone. The silent assumption of
universal nonambiguity is akin to the pre-relativistic assumption of an uncurved
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Figure I Inexact oval. Which statement better describes the situation: (a) -It is probably an ellipse- or
(b) -it is a fuzzy ellipse-?

universe. A nAc-o is the "parallel postulate" of classical set theory and logic,
indeed of Western thought.

If fuzziness is a unique type of uncertainty, if fuzziness exists, the physical
consequences are universal, and the sociological consequence is startling: scientists,
especially physicists, have overlooked an entire mode of reality.

Fuzziness is a type of deterministic uncertainty. Ambiguity is a property of
physical phenomena. Unlike fuzziness, probability dissipates with increasing
information. After the fact "randomness" looks like fiction. (This is especially
awkward since in general the laws of science are time reversible, invariant if time t
is replaced with time -t. Where does the randomness go?) Yet there is as much
ambiguity after a sample-space experiment as before. Increasing information tends
to specify the degrees of occurrence. Even if science had run its course and all tie
facts were in, a platypus would remain only roughly a mammal, a large hill only
roughly a mountain, an oval squiggle only roughly an ellipse. Fuzziness does not
require that God play dice.

Consider the inexact oval in Figure 1. Does it make more sense to say that the
oval is probably a circle (or ellipse), or that it is a fuzzy ellipse? There is nothing
random about the matter. The situation is deterministic: All the facts are in. Yet
uncertainty remains. The uncertainty is due to the simultaneous occurrence of two
properties: to some extent the inexact oval is an ellipse and to some extent it is
not an ellipse.

More formally, is mA(x), the degree to which element x belongs to fuzzy set A,
simply the probability that x is in A? Is mA(x)=Prob{xeA} true? Cardinality-
wise, sample spaces cannot be too big. Else a positive measure cannot be both
countably additive and finite, and thus a probability measure. The space of all
possible oval figures is too big, since there are more of these than real numbers.
Almost all sets are too big to define probabilities, yet fuzzy sets can always be
defined.

Prob{xEA} might be interpreted as the probability of a fuzzy event, the
probability that element x belongs to fuzzy set A with degree mA(x). Rarely indeed
then should the equality Prob {xEA) = MA(x) occur.
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But this is not the intended interpretation of the assertion Prob {x eA} = mA(x).
Instead set A is not fuzzy. The element x either is or is not an element of set A.
We do kiot know which, and we describe this uncertainty with the probability
Prob{xeA}. But then surely Prob(xe-A 96mA(x). For example, Prob{xEAnA'}
=0 and Prob{xAuA'}=l for every nonfuzzy set A. Yet mA,A(x)>0 and

MA,(x) < ' for every properly fuzzy set A.
Probability theory is a chapter in the book of finite measure theory. Many

probabilists do not care for this classification, but they fall back upon it when
defining terms.7 How reasonable is it to believe that finite measure theory-
ultimately, the summing of nonnegative numbers to unity-exhaustively describes
the (quantum-mechanical) universe? Does it really describe any thing?

Surely from time to time every probabilist wonders whether probability
describes anything real. From Democritus to Einstein, there has been the suspicion
that, as David Hume' put it,
though there be no such thing as chance in the world, our ignorance of the real cause of any event has
the same influence on the understanding and begets a like species of belief.

When we model noisy processes by extending differential equations to stochastic
differential equations, it seems we introduce the formalism only as a working
approximation to several underlying unspecified processes, processes that presum-
ably obey deterministic differential equations. In this sense conditional expec-
tations and martingale techniques might seem reasonably applied, for example, to
stock options or commodity futures phenomena, where the behavior involved
consists of aggregates of aggregates of aggregates. The same techniques seem less
reasonably applied to quarks, leptons, and void.

3. THE UNIVERSE AS A FUZZY SET

The world, as Wittgenstein t1 observed, is everything that is the case. In this spirit
we can summarize the ontological case for fuzziness: The universe consists of all
subsets of the universe. The only subsets of the universe that are not fuzzy are the
constructs of classical mathematics. All other sets-sets of particles, cells, tissues,
people, ideas, galaxies-in principal contain elements to different degrees. Their
membership is partial, graded, inexact, ambiguous, or uncertain.

The same universal circumstance holds at the level of logic and truth. The only
logically true or false statements-statements S with truth value (S) in {0, I }-are
tautologies, theorems, and contradictions. If S is any statement about the universe,
an empirical statement, then 0< t(S) <1 holds by the canons of scientific method
and by the lack of a single demonstrated factual statement S with (S)= 1 or
(S) =0. That is the thrust of Einstein's quote above.

Fuzziness arises from the ambiguity between a thing A and its opposite A'. If we
do not know A with certainty, we do not know A" with certainty either. Else by
double negation we would know A with certainty. This produces nondegenerate
overlap: A n A' : 0, which breaks the "law of noncontradiction". Equivalently, this
also produces nondegenerate underlap:' 0 AuA'#X, which breaks the "law of
excluded middle". Here X is the ground set or universe of discourse. Recall' that
these laws are never broken in probabilistic or stochastic logics-P(A and not-
A)=0 and P(A or not-A)= I-even though they are broken with many, perhaps
most, human utterances. Nor are probability measures allowed to take such fuzzy
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sets as arguments. The sets must first be quantized, rounded off, or defuzzified to
the nearest nonfuzzy set. So the question arises: How mathematically natural are
fuzzy sets?

4. THE GEOMETRY OF FUZZY SETS: SETS AS POINTS

It helps to see the geometry of fuzzy sets when discussing fuzziness. To date this
visual property has been overlooked. The emphasis has instead been on interpret-
ing fuzzy sets as membership functions, mappings m., from domain X to range
[0, 1]. But functions are hard to visualize. Membership functions are often pictured
as two-dimensional graphs, with the domain X misleadingly represented as one-
dimensional. The geometry of fuzzy sets involves both the domain X = {x,...,x,}
and the range [0, 1] of mappings MA: X--{0, I]. The geometry of fuzzy sets is a
great aid in understanding fuzziness, defining fuzzy concepts, and proving fuzzy
theorems. Visualizing this geometry may by itself be the most powerful argument
for fuzziness.

The geometry of fuzzy sets is revealed by asking an odd question: What does
the fuzzy power set F(2x), the set of all fuzzy subsets of X, look like? Answer A
cube. What does a fuzzy set look like? A point in a cube. The set of all fuzzy
subsets is the unit hypercube In=[0, 1]". A fuzzy set is any point"1 in the cube I".
So (X, I") is the fundamental measurable space of (finite) fuzzy theory. The theory
of fuzzy sets-more accurately, the theory of continuous sets-can be taught on a
Rubik's cube.

Vertices of the cube 1' are nonfuzzy sets. So the ordinary power set 2
x , the set

of all 2" nonfuzzy subsets of X, is the Boolean n-cube B": 2X = B". Fuzzy sets fill in
the lattice B" to produce the solid cube I": F(2x) = I".

Consider the set of two elements X={x, x2 }. The nonfuzzy power set 2x

contains four sets: 2x={0,X,{x},{xz}}. These four sets correspond respectively
to the four bit vectors (00), (11), (10), and (0 1). The Is and Os indicate the
presence or absence of the ith element xi in the subset. More abstractly, each
subset A is uniquely defined by one of the two-valued membership functions
mA:X -{O, 1}.

Now consider the fuzzy subsets of X. The fuzzy subset A =(-) can be viewed as
one of the continuum-many continuous-valued membership functions mA:X-
[0, 1]. Indeed this is the classical Zadeh 6 sets-as-functions definition of fuzzy sets.
In this example element x, belongs to, or fits in, subset A a little bit-to degree I.

33
Element x 2 has more membership than not at 3. Analogous to the bit vector
representation of finite (countable) sets, we say that A is represented by the fit
vector (1.). The element mA(xi) is the ith fit"° or fuzzy unit value. The
set-as-points view then geometrically represents the fuzzy subset A as a point in 12,

the unit square, as in Figure 2.
The midpoint of the cube I" is maximally fuzzy. All its membership values are 1.

The midpoint is unique in two respects. First, the midpoint is the only set A that
not only equals its own opposite A' but equals its own overlap and underlap as
well:

A = A n A'= A u A'= A".

Second, the midpoint is the only point in the cube I" that is equidistant to each
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{X2)=(o 1) X= (1 1)

aA
4 - . .-

X2

0=(o0) 1. {xij=(lO)
3 Xl

Figure 2 Sets as points. The fuzzy subset A is a point in the unit 2-cube with coordinates or fit values
(A 3). The first element x, fits in or belongs to A to degree 1. the clement x 2 to degree 3,. The cube
consists of all possible fuzzy subsets of two elements {x,.x 2 }. The four corners represent the power set
21 of {xIx 2 }.

of the 2" vertices of the cube. The nearest corners are also the farthest. This
metrical relationship is evident in Figure 2.

Fuzzy sets are combined 6 pairwise with minimum, maximum, and order
reversal, as are nonfuzzy sets. Fuzzy set intersection is defined fitwise by pairwise
minimum (picking the smaller of the two elements), union by pairwise maximum,
and complementation by order reversal. For example:

A=(l 0.8 0.4 0.5)

B =(0.9 0.4 0 0.7)

A n B =(0.9 0.4 0 0.5)

AuB=(l 0.8 0.4 0.7)

A"=(0 0.2 0.6 0.5)

AnA'=(0 0.2 0.4 0.5)

AuA =(1 0.8 0.6 0.5).

Note that the overlap fit vector AnrAC is not the vector of all zeroes and the
underlap fit vector A u A' is not the vector of all ones. This is true of all properly
fuzzy sets, all points in I' other than vertex points. Indeed the min-max definitions
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(X2)=(O 1) X=(I 1)

A. ,Au.Ac .
4 . ... 4- ......

4

0=(O 0) 1 xl(1 0)
3 3

X1

Figure 3 Completing the fuzzy square. The fuzzier A is, the closer A is to the midpoint of the fuzzy
cube. As A ipproaches the midpoint., all four points-A. Ac. AnAc, and AuAr-contract to the
midpoint. The less fuzzy A is, the closer A is to the nearest vertex. As A approaches the vertex, all four
points spread out to the four vertices and the bivaleat power set 2x is recovered.

give at once the following fundamental characterization of fuzziness as non-
degenerate overlap and nonexhaustive underlap.

PRor~osrrnoN A is properly fuzzy if and only if A n- ACO 0 and if and only if
AuA'.X.

An illustration of this fundamental proposition is what we might call completing
the fuzzy square. Consider again the two-dimensional fuzzy set A defined by the fit
vector (S D. The corresponding overlap and underlap sets can be found by first
finding the complement set A" and then combining the fit vectors pairwise with
minimum and with maximum:

A =(2 1)

AnA'=(A' 4)

AcA=(' 2).

The sets-as-points view shows that these four points in the unit square hang
together, indeed move together, in a very natural way. Consider the geometry of
Figure 3.

In Figure 3 the four fuzzy sets involved in the fuzziness of set A-the sets A, Ac,
ArA, and AuA -contract to the midpoint as A becomes maximally fuzzy and
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expand out to the Boolean corners of the cube as A becomes minimally fuzzy. The
same contraction and expansion occurs in n dimensions for the 2" fuzzy sets
defined by all combinations of mA(xt) and mA(x1), .... ,mA(x.) and mA,(X.

At the midpoint nothing is distinguishable. At the vertices everything is
distinguishable. These extremes represent the two ends of the spectrum of logic
and set theory. In this sense the midpoint is the black hole of set theory.

5. PARADOX AT THE MIDPOINT

The midpoint is full of paradox. It is forbidden to classical logic and set theory.
Where midpoint phenomena appear in Western thought they are invariably
labeled "paradoxes" or denied altogether. Midpoint phenomena include the half-
empty and half-full cup, the Taoist Yin-Yang, the liar from Crete who said that all
Cretans are liars, Bertrand Russell's set of all sets that are not members of
themselves, and Russell's barber.

Russell's barber is a bewhiskered man who lives in a town and shaves a man if
and only if he does not shave himself. So who shaves the barber? If he shaves
himself, then by definition he does not. But if he does not shave himself, then by
definition he does. So he does and he does not--contradiction ("paradox-).
Gaines4 observed that this paradoxical circumstance can be numerically inter-
preted as follows.

Let S be the proposition that the barber shaves himself and not-S that he does
not. Then since S implies not-S and not-S implies S, the two propositions are
logically equivalent S = not-S. Equivalent propositions have the same truth values:

t(S) =t(not-S)

Solving for t(S) gives the midpoint point of the truth interval (the one-dimensional
cube [0, 1]): t(S)=-. The midpoint is equidistant to the vertices 0 and 1. In the.
bivalent (two-valued) case, roundoff is impossible and paradox occurs.

In bivalent logic both statements S and not-S must have truth value zero or
unity. The fuzzy resolution of the paradox only uses the fact that the truth values
are equal. It does not in principle constrain their range. The midpoint value I
emerges from the structure of the problem and the order-reversing effect of
negation.

The paradoxes of classical set theory and logic are part of the price one pays for
an arbitrary insistence on bivalence. This insistence is often made in the name of
science. In the end, though, if is simply a cultural preference, a reflection of an
educational predilection that goes back at least to Aristotle. It takes great faith to
insist on bivalence in the face of both bivalent contradictions (paradoxes) and a
consistent fuzzy alternative.

Put another way, fuzziness shows that there are limits to logical certainty. We
can no longer assert the laws of noncontradiction and excluded middle for
sure-and for free.

The fuzzy theorist must explain why so many people have been wrong for so
long. We now have the machinery to offer an explanation. The reason is that
rounding off, quantizing, simplifies life and often costs little. We agree to call empty
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Figure 4 The count M(A) of A is the fuzzy Hamming norm (1I norm) of the vector drawn from the
origin to A.

the near empty cup, and present the large pulse and absent the small pulse. We
round off points inside the fuzzy cube to the nearest vertex. This roundoff heuristic
works fine as a first approximation to describing the universe until we get near the
midpoint of the cube. These phenomena are harder to roundoff. In the logically
extreme case, at the midpoint of the cube, the procedure breaks down completely
because every vertex is equally close. Hands are thrown up and paradox declared.

Faced with midpoint phenomena, the fuzzy skeptic is in the same position as the
flat-earther, who denies that the earth's surface is curved, when she stands at the
north pole, looks at her compass and wants to go south.

6. COUNTING WITH FUZZY SETS

How big is a fuzzy set? The size or cardinality of A, M(A), is the sum of the fit
values of A:

M(A)= M mA(x).
i=1

The count of A=(3) is M(A)= t+'=B. The cardinality measure M is
sometimes called the sigma-count." The measure M generalizes9 the classical
counting measure of combinatorics and measure theory. (So (X,J',A) is the
fLndamental measure space of fuzzy theory.) In general the measure M does not
give integer values.

The measure M has a natural geometric interpretation in the sets-as-points
framework. It is the magnitude of the vector drawn from the origin to the fuzzy
set, as illustrated in Figure 4.
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Consider the !P distance between fuzzy sets A and B in I':

IP(A, B)=/ I"x,- (,l,

where 1 p:oo. The 12 distance is the physical Euclidean distance actually
illustrated in the figures. The simplest distance is the 1' or fuzzy Hamming distance,
the sum of the absolute fit differences. We shall use fuzzy Hamming distance
throughout, though all results admit a general IP formulation. Using the fuzzy
Hamming distance the count M can be rewritten as the desired l norm:

M(A) = Y mA(xJ)
i=1

= Z ImA (xi) - o1
i

i

= 1'(A, 0).

7. THE FUZZY ENTROPY THEOREM

How fuzzy is a fuzzy set? Fuzziness is measured by a fuzzy entropy measure.
Entropy is a generic notion. It need not be probabilistic. Entropy measures the
uncertainty of a system or message. A fuzzy set is a type of system or message. Its
uncertainty is its fuzziness.

The fuzzy entropy of A, E(A), varies from 0 to I on the unit hypercube I". Only
the cube vertices have zero entropy, since nonfuzzy sets are unambiguous. The
cube midpoint uniquely has maximum entropy one. Fuzzy entropy smoothly
increases as one moves from- any vertex to the midpoint. The algebraic require-
ments for fuzzy entropy measures can be found in Klir.8

Simple geometric considerations lead1 0 to a ratio form for the fuzzy entropy.
The closer the fuzzy set A is to the nearest vertex A.., the farther A is from the
farthest vertex A far. Opposite the long diagonal from the nearest vertex is the
farthest vertex. Let a denote the distance 1'(A, At.,) to the nearest vertex and let b
denote the distance 1'(A, Af.,) to the farthest vertex. Then the fuzzy entropy is
simply the ratio of a to b:

a 1(A, A.,)
E(A) = -1(A ' A 1,

The sets-as-points interpretation of the fuzzy entropy is shown in Figure 5, where
A=(' ), A.,.r=(0 1), and Af,,=(l 0). So a= 1+1=7 and b='+2= ' . So E(A)=
7

Alternatively, those reading this in a room can imagine that the room is the unit
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Figure 5 Fuzzy entropy E(A)=a/b as balance between distance to nearest vertex and distance to
farthest vertex.

cube 13 and that their head is a fuzzy set in it. Once the nearest corner of the
room is located, the farthest corner is opposite the long diagonal emanating from
the nearest corner. If your head is in a corner, a=0 and E(A)=0. If your head is
in the metrical center of the room, every corner is nearest and farthest. So a=b
and E(A)= 1.

Since overlap and underlap characterize fuzziness we can expect them to be
involved in the measure of fuzziness. Careful examination of the completed fuzzy
square in Figure 3 shows that this is the case. For, by symmetry, each of the four
points A, A', A r)Ac, and AuA' is equally close to its nearest vertex. The common
distance is a. Similarly, each point is equally far from its farthest vertex. The
common distance is b. One of the first four distances is the count M(Ar) A). One
of the second four distances is the count M(A u A"). This gives a geometric proof
of the Fuzzy Entropy Theorem,' " which states that fuzziness consists of a
balance of counted violations of the law of noncontradiction and counted
violations of the law of excluded middle.

Fuzzy ENTROPY THEOREM

E(,4) = M( A n A'
M(A u A')'

An algebraic proof is straightforward. The geometric proof can be seen by
examining the completed fuzzy square in Figure 6.

The Fuzzy Entropy Theorem explains why fuzziness begins where Western logic
ends. When the laws of noncontradiction and excluded middle are obeyed, overlap
is empty and underlap is exhaustive. So M(A n A') = 0 and M(A u A') = n, and thus
E(A) = 0.
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Figure 6 Geometry of the Fuzzy Entropy Theorem. By symmetry each of the four points on the
completed fuzzy square is equally close to its nearest vertex and equally far from its farthest vertex.

The Fuzzy Entropy Theorem also provides a first-principles derivation of the
basic fuzzy set operations of minimum (intersection), maximum (union), and order
reversal (complementation) proposed in 1965 by Zadeh' 6 at the inception of fuzzy
theory. (Lukasiewicz first proposed these operations for continuous or fuzzy logics
in the 1920s.)

For the fuzzy theorist, this result also shows that triangular norms or T-norms,8

which generalize conjunction or intersection, and the dual triangular co-norms C,
which generalize disjunction or union, do not have the first-principles status of
min and max. For, the triangular norm inequalities,

T(x, y) < min (x, y) < max (x, y) < C(x, y),

show that replacing min with any T in the numerator term M(A n A9 can only
make the numerator smaller. Replacing max with any C in the term M(A U A')
can only make the denominator larger. So any T or C not identically min or max
makes the ratio smaller, strictly smaller if A is fuzzy. Then the entropy theorem
does not hold and the resulting pseudo-entropy measure does not equal unity at
the midpoint, though it continues to be maximized there. This can be easily seen
with the product T-norm t" T(xy)=xy and its DeMorgan dual co-norm C(x,y)=
l-T(l-x,l-y)=x+y-xy, or with the bounded sum T-norm T(xy)=
max (0, x + y- 1) and DeMorgan dual C(x, y) = min(l, x + y). The Entropy Theorcm
similarly fails in general if the negation or complementation operator N(x)= I - x
is replaced by a parameterized operator No(x)=(l -x)/(l +ax) for nonzero a> - I.

As an aside, note that all probability distributions, all sets A with M(A)= I, in i"
form a n -1 dimensional simplex S". In the unit square the probability simplex is
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the negatively sloped diagonal line. In the unit 3-cube it is a solid triangle. In the
unit 4-cube it is a tetrahedron, and so on up.

If no probabilistic fit value pi is such that p,>', then the Fuzzy Entropy
Theorem implies1" that the distribution P has fuzzy entropy E(P)= l/(n- 1). Else
E(P) < l/(n - 1). So the probability simplex S' is entropically degenerate for large
dimensions n. This result also shows that the uniform distribution (1/n,..., 1/n)
maximizes fuzzy entropy on S' but not uniquely. This in turn shows that fuzzy
entropy differs from the average-information measure of probabilistic entropy,
which is uniquely maximized by the uniform distribution.

The Fuzzy Entropy Theorem also implies that, analogous to log lIp, a unit of
fuzzy information is f/(l -f) or (1 -f)/f, depending on whether the fit value f
obeys f :5 1 or f > .

The event x can be ambiguous or clear. It is ambiguous if f is approximately!
and clear if f is approximately I or 0. If an ambiguous event occurs, is observed,
is disambiguated, etc., then it is maximally informative: E(f)= E(l)= 1. If a clear
event occurs, is observed, etc., it is minimally informative: E(f)=E(0)=E(1)=0.
This is in accord with the information interpretation of the probabilistic entropy
measure log l/p, where the occurrence of a sure event (p=-) is minimally
informative (zero entropy) and the occurrence of an impossible event (p=0) is
maximally informative (infinite entropy).

8. THE SUBSETHOOD THEOREM

Sets contain subsets. A is a subset of B, denoted A c B, if and only if every element
of A is an element of B. The power set 2' contains all of B's subsets. So,
alternatively,' A is a subset of B just in case A belongs to B's power set:

AcB if and only if Ac2".

The subset relation corresponds to the implication relation in logic. In classical
logic truth is a mapping from the set of statements {S} to truth values:
t:{S}-.{0,1}. Consider the truth-tabular definition of implication for bivalent
propositions P and Q:

PI QI P-.Q

0 0 1

0 1 1
1 0 0
1 l 1

The implication is false if and only if the antecedent P is true and the consequent
Q is false-when "truth implies falsehood".

The same holds for subsets. Representing sets as bivalent functions m,: X--{0, l,
A is a subset of B if there is no element x that belongs to A but not to B, or
MA(x)=l but m,(x)=0. This membership-function definition can be rewritten as
follows:

AcB if and only if mA(x) mB(x) for allx.
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Figure 7 Fuzzy power set F(2a) as a hyper-rectangle in the fuzzy cube. Side lengths are the fit values
m,(x). The size or volume of F(20 ) is the product of the fit values.

Zadeh 16 proposed the same relation for defining when fuzzy set A is a subset of
fuzzy set B. We refer to this as the dominated membership function relationship. If
A=(0.300.7) and B=(0.4 0.7 0.9), then A is a fuzzy subset of B but B is not a fuzzy
subset of A. A candidate fuzzy set A either is or is not a fuzzy subset of B. This is
the problem. The relation of fuzzy subsethood is not fuzzy. It is either black or
white.

The sets-as-points view asks a geometric question: What do all fuzzy subsets of
B look like? What does the fuzzy power set of B-F(2), the set of all fuzzy subsets
of B-look like? The dominated membership function relationship implies that
F(2') is the hyper-rectangle emanating from the origin with side lengths given by
the fit values mA(x). Figure 7 displays the fuzzy power set of the set B=(!-). Of
course the count of F(28) is infinite if B is not empty. For finite-dimensional sets,
the size of F(28 ) can be taken'' as the Lebesgue measure or volume V(B), the
product of the fit values:

V(B) mrB(xj.
i=1

Figure 7 illustrates that F(28 ) is not a fuzzy set. A cube point A either is or is
not in the hyper-rectangle F(28 ). Some points A outside the hyper-rectangle F(28 )
resemble subsets of B more than other points do. The black-white definition of
subsethood ignores this.

The natural generalization is to define fuzzy subsets on F(28 ). Some sets A
belong in F(2B) to different degrees. The abstract membership function mRF2 .,(A)
can be any number in [0, I]. Degrees of subsethood are possible.

Let S(A, B) denote the degree to which A is a subset of B:
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S(A, B) = Degree (A c B)

= mF(2 .,(A).

S(-, -) is the subsethood measure. S(-, -) takes values in [0, 1]. We will see that it
is the fundamental, unifying structure in fuzzy theory.

The current task is to measure S(A,B). We will first present an earlier1 l.1

algebraic derivation of the subsethood measure S(A, B). We will then present a
new, more fundamental, geometric derivation.

The algebraic derivation is the fit-violation strategy.1 0 The idea is that you
study a law by breaking it. Consider the dominated membership function
relationship: A ( B if and only if mA(x)_-<m 8(x) for all x in X.

Suppose element x, violates the dominated membership function relationship:

mA(X)>mB(x). Then A is not a subset of B, at least not totally. Suppose further
that the dominated membership inequality holds for all other elements x. Only
element x, violates the relationship. For instance, X may consist of one hundred
values: X={xj,... ,x 0 0}. The violation might occur, say, with the first element:
x, =x.. Then intuitively A is largely a subset of B. Suppose now that X contains a
thousand elements, or a trillion elements, and only the first element violates the
dominated membership function relationship. Then surely A is overwhelmingly a
subset of B; perhaps S(A, B) = 0.999999999999.

This argument suggests we should count fit violations in magnitude and
frequency. The greater the violations in magnitude, mA(xV)-mB(x.), and the
greater the number of violations relative to the size M(A) of A, the less A is a
subset of B; equivalently, the more A is a superset of B. For, both intuitively and
by the dominated-membership definition, supersethood and subsethood are inver-
sely related:

SUPERSETHOOD (A, B) = 1 - S(A, B).

The simplest way to count violations is to add them. If we sum over all x, the
summand should equal mA(x)-mB(x,) when this difference is positive, zero when
it is nonpositive. So the summand is max(0,mA(X)-m(x)). The unnormalized
count is therefore the sum of these maxima:

E max (0, mA(x) - mB(x)).
xEX

The simplest, and most appropriate, normalization factor is the count of A, M(A).
We can assume M(A)>0 since M(A)=0 if and only if A is empty. The empty set
trivially satisfies the dominated membership function relationship. So it is a subset
of every set. Normalization gives the minimal measure of nonsubsethood, of
supersethood:

SUPERSETHOOD (A, B) = max (0, mA(x) - mB(x))
M(A)

Then subsethood is the negation of this ratio. This gives the minimal fit-violation
measure of subsethood:
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S(A, B) = max (0, MA(x) - mB(x))
M(A)

The subsethood measure may appear ungraceful at first but it behaves as it
should. Observe that S(A, B) = 1 if and only if the dominated membership function
relationship holds. For if it holds, zero violations are summed. Then
S(A, B) = 1 -0 = 1. If S(A, B) = 1, every numerator summand is zero. So no violation
occurs. At the other exteme, S(A,B)=0 if and only if B is the empty set. So the
empty set is the unique set without subsets, fuzzy or nonfuzzy. Degrees of
subsethood occur between these extremes.

The subsethood measure also relates to logical implication. Viewed at the I-
dimensional level of fuzzy logic, and so ignoring the normalizing count (M(A)= 1),
the subsethood measure reduces to the Lukasiewicz implication operator:

S(A, B)= I -max(o, mA -MB)

= 1 -[1 -min(1-0, 1 -(mA- mB))]

= min(1, I -MA +MB)

= tL(A --B),

which clearly generalizes the truth-tabular definition of bivalent implication.
Consider the fit vectors A = (0.200.4 0.5) and B = (0.70.6 0.3 0.7). Neither set is a

proper subset of the other. A is almost a subset of B but not quite since
mA(x 3)-m(x 3)=0.4 -0. 3 =O.l >0. Hence S(A,B)= 1- -- . Similarly S(B,A)=

The concept of subsethood applies to nonfuzzy sets. Consider the sets

C = {X , X 2, X3 , X5, X , X. 91 X 1 X 1 2 , X 1 4 }

and

D={x 2,x3,x1,x,x, xt,xs,x9 ,x1 , X10 ,x1 3,x 14 }

with corresponding bit vectors

C=(I 1 1 0 1 0 1 0 1 1 0 1 0 1)

D=(0 1 1 1 1 111110111)

C and D are not subsets of each other. But C should very nearly be a subset of D
since only x, violates the dominated membership function relationship. We find
S(C,D)=I- =] while S(D,C)=-_4=2. So D is more a subset of C than it is
not. This is because the two sets are largely equivalent. They have much overlap:
M(CnD)=8. This observation motivates the Fuzzy Subsethood Theorem pre-
sented below. First, though, we present a new geometric derivation of the
subsethood measure.

Consider the sets-as-points geometry of subsethood in Figure 7. Set A is either
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in the hyper-rectangle F(28 ) or not. Intuitively the subsethood of A in B should be
nearly unity when A is arbitrarily close to the fuzzy power set F(21). The farther
away, the less the subsethood S(A, B) or, equivalently, the greater the
supersethood.

So the key idea is metrical: How close is A to F(2)? Let d(A, F(28 )) denote this
IP distance. There is a distance d(A, B) between A and every point B' in the
hyper-rectangle, every subset B" of B. The distance d(A, F(25 )) is the smallest such
distance. Since the hyper-rectangle F(28 ) is geometrically well bhaved-F(2') is
closed and bounded (compact) and convex--some subset B* of B achieves this
minimum distance. So the infimum, the greatest lower bound, is the distance
d(A, B*):

d(A, F(2)) =inf {d(A, B): B' E F(2 )}

= d(A, B*).

The closest set B* is easy to locate geometrically. In the Euclidean or (2 case,
this is formally due to the geometric Hahn-Banach Theorem since F(2') is convex.
If A is a subset of B- if A is in the hyper-rectangle F(28 -- then A itself is the
closest subset: A = B*. So suppose A is not a proper subset of B.

The unit cube I" can be sliced into 2" hyper-rectangles by extending the sides of
F(2') to hyperplanes. The hyperplanes intersect perpendicularly (orthogonally), at
least in the Euclidean case. F(2') is one of the hyper-rectangles. The hyper-
rectangle interiors correspond to the 2" cases whether mA(xi)<mB(xi) or mA(xi)>
mB(xl) for fixed B and arbitrary A. The edges are the loci of points when some
mA(Xi) = mB(xi).

The 2" hyper-rectangles can be classified as mixed or pure membership
domination. In the pure case either mA<m or mA>m B holds in the hyper-
rectangle interior for all x and all interior points A. In the mixed case
mA(x)<mB(x) holds for some of the coordinates x, and mA(xj)>mg(xy) holds for
the remaining coordinates xj in the interior for all interior A. So there are only
two pure membership-domination hyper-rectangles, the set of proper subsets F(28 )
and the set of proper supersets.

Figure 8 illustrates how the fuzzy power set F(2') of B=(-2) can be linearly
extended to partition the unit square into 22=4 rectangles. The non-subsets At,
A 2 and A 3 reside in distinct quadrants. The northwest and southeast quadrants
are the mixed membership-domination rectangles. The southwest and the north-
east quadrants are the pure rectangles.

The nearest set B* to A in the pure superset hyper-rectangle is B itself. The
nearest set B* in the mixed case is found by drawing a perpendicular (orthogonal)
line segment from A to F(20 ). Convexity of F(2') is responsible. In Figure 8 the
perpendicular lines from A, and A 3 intersect line edges (1-dimensional linear
subspaces) of the rectangle F(2'). The line from A 2 to B, the corner of F(2'), is
degenerately perpendicular since B is a zero-dimensional linear subspace.

These -orthogonality" conditions are more pronounced in three dimensions. Let
your room again be the unit 3-cube. Consider a large dictionary fit snugly against
the floor corner corresponding to the origin. Point B is the dictionary corner
farthest from the origin. Extending the three exposed faces of the dictionary
partitions the room into 8 octants, one of which is occupied by the dictionary.
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Figure 8 Partition of hypcrcube V into 2" hyper-rectangles by linearly extending F(29). The nearest
points B, and B to points At and A 3 in the northwest and southeast quadrants are found by the
normals from F(2) to A, and A 3. The nearest point BO to point A2 in the northeast quadrant is itself.
This -orthogonal- optimality condition allows d(A. B) to be given by the general Pythagorean Theorem
as the hypotenuse in an t' -right- triangle.

Points in the other 7 octants are connected to the nearest points on the dictionary
by lines that perpendicularly intersect one of the three exposed faces, one of the
three exposed edges, or the corner B.

The "orthogonality" condition invokes the (P-version of the Pythagorean
Theorem. For our I' purposes:

d(A, B) =d(A, B*) + d(B, B).

The more familiar 12-version, actually pictured in Figure 8, requires squaring these
distances. For the general (P case:

IIA - BJJ = IIA - B*fJP + JIB*- BII',

or equivalently,

Y_ Ia,-bjIP= Y JI,-&~'+ Y b-~'
i=1 j=1 i=1

Equality holds for all p > 1 since, as is clear from Figure 8 and in general, from the
algebraic argument below, either b* = aj or b! = bi.

This Pythagorean equality is surprising. We have come to think of the
Pythagorean Theorem (and orthogonality) as an e2 or Hilbert space property. Yet
here it holds in every 6P space-if B* is the set in F(2') closest to A in 'P distance.
Of course for other sets strict inequality holds in general if p0 2. This suggests a
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Figure 9 Dependence of subsethood on the count M(A). A, and A2 are equidistant to F(28 ) but A, is
doser to B than A2 is; correspondingly, M(A,)>M(A 2 ). Loci of points A of constant count M(A) are
line segments parallel to the negatively sloping long diagonal. Pt spheres centered at B are diamond
shaped.

special status for the closest set B*. We shall see below that the Subsethood
Theorem confirms this suggestion. We shall use the term "orthogonality" loosely
to refer to this IP Pythagorean relationship, while remembering its customary
restriction to I" spaces and inner products.

The natural suggestion is to define supersethood as the distance d(A, F(28 ))=
d(A, B*). Supersethood increases with this distance, subsethood decreases with it.
To keep supersethood, and thus subsethood, unit-interval valued, the distance
must be suitably normalized.

The simplest way to normalize d(A, B*) is with a constant: the maximum unit-
cube distance, n'I P in the general 1" case and n in our case. This gives the
candidate subsethood measure

d(A, B*)
S(A, B) = -

This candidate subsethood measure fails in the boundary case when B is the
empty set. For then d(A,B*)=d(A,B)=M(A). So the measure gives S(A,0)=
1-(M(A)n)>O. Equality holds exactly when A=X. But the empty set has no
subsets. The only normalization factor that ensures this is the count M(A). Of
course M(A)=n when A = X.

Normalizing by n also treats all equidistant points the same. Consider points A1

and A 2 in Figure 9. Both points are equidistant to their nearest F(28 ) point:
d(A,Btj)=d(A2 ,B*). But A, is closer to B than A 2. In particular A, is closer to
the horizontal line defined by the fit value mR(x 2)=J. The variable quantity that
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reflects this is the count M(A):M(A)>M(A 2). The count gap M(A 1)--M(A 2) is
due to the fit gap involving x1 , and reflects d(A1, B)<d(A2, B). In general the count
M(A) relates to this distance, as can be seen by checking extreme cases of closeness
of A to B (and drawing some diamond-shaped I spheres centered at B). Indeed if
mA > mB everywhere, d(A, B) = M(A) - M(B).

Since F(2B) fits snugly against the origin, the count M(A) in any of the other
2"- 1 hyper-rectangles can only be larger than the count M(B*) of the nearest
F(2') points. The normalization choice of n leaves the candidate subsethood
measure indifferent to which of the 2"-1 hyper-rectangles A is in and to where A
is in the hyper-rectangle. Each point in each hyper-rectangle involves a different
combination of fit violations and satisfactions. The normalization choice of M(A)
reflects this fit violation structure as well as behaves appropriately in boundary
cases.

The normalization choice M(A) leads to the subsethood measure

S(A, B) = 1 d(A, B*)
M(A)

We now show that this measure is equal to the subsethood measure derived
algebraically above.

Let B be any subset of B. Then by definition the nearest subset B* obeys the
inequality:.

"N

where for convenience ai=mA(x) and similarly for the b, fit values. We will assume
p-= I but the following characterization of b! is valid for any p > 1.

By orthogonality we know that a, is at least as big as bl. So first suppose
ai bl. This occurs if and only if no violation occurs: aj < bi. (If this holds for all i,
then A = B*.) So max (0, a1 - bi) = 0. Next suppose a > b!'. This occurs if and only if
a violation occurs: ai > bi. (If this holds for all i, then B = B*.) So b!' = bi since B* is
the subset of B nearest to A. Equivalently, ai>bi holds if and only if
max (0, a- bj) =aj- b1. So the two cases together prove that max (0, a,- bj) =
lai-bf i. Summing over all x, gives:

d(A, B*) = max (0, mA(xI) - Mndxi) ) .
4=1

So the two subsethood measures are equivalent.
This proof also proves a deeper characterization of the optimal subset

B°:B°=AnB. For if a violation occurs, a,>bi and b4=b . So min(a,,b,)=br.
Otherwise a, = b, and so min (a., bi) = b*.

This in turn proves that BO is a point of double optimality. Not only is B* the
subset of B nearest A, BO is also A*, the subset of A nearest to B:d(B,F(2A))=
d(B,A*)=d(B,B*). Figure 10 illustrates that B*=AcnB=A* is the set within both



232 B. KOSKO

(X2}=(0 1)4 X= (1 1)

z B
3 I

X2

B =A'=A n B

0=(O O) _ x-.(I 0)
3 X

Figure 10 B as both the subset of B nearest A and the subset A of A nearest B: B=A=AcB.
The distance d(A. B*) = M(A) - M(A r% B) illustrates the Subsethood Theorem.

the hyper-rectangle F(2 A) and the hyper-rectangle F(2') that has maximal count
M(A n B).

Figure 10 also shows that the distance d(A, B*) is a vector magnitude difference:
d(A, B*) = M(A) - M(A n B). Dividing both sides of this equality by M(A) and
rearranging proves a surprising and still deeper structural characterization of
subsethood, the Subsethood Theorem.

SUBSETHOOD THEOREM

S(A, B) = M(A n B)
M(A)

The ratio form of the subsethood measure S(A,B) is familiar. It is the same as
the ratio form of the conditional probability P(BIA). The fundamental difference is
that the ratio form is derived for the subsethood measure S(A, B) but assumed for
the conditional probability P(BA). This is the difference between showing and
telling. The inability to derive conditional probability further suggests that
probability is not real. For every probability is a conditional probability,
P(A)= P(AIX).

Consider first the physical interpretation of randomness as a relative frequency.
The Subsethood Theorem suggests that randomness is a working fiction akin to
the luminiferous ether of nineteenth-century physics-the phlogiston of thought.
For in one stroke we can now derive the relative frequency definition of
probability as S(X, A), the degree to which a bivalent superset X, the sample space,
is a subset of its own subset A. The concept of randomness never enters the
deterministic framework.

Suppose A and B are nonfuzzy subsets of X. (X, like every observed set, is at
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most countably infinite.) Suppose A is a subset of B. In the extreme case B = X.
Then the degree of subsethood S(B, A) is what has traditionally been called a
relative frequency:

S(B, A) -M(A)
M(B)

nA

where the N elements of B constitute the de facto universe of discourse of the
"experiment". (Of course the limit of the ratio S(B,A) can be taken if it
mathematically makes sense.7 ) The probability nA/N has been reduced to degrees
of subsethood, a purely fuzzy set-theoretical relationship. An immediate historical
speculation is that if set theory had been more carefully worked out first, the
notion of "randomness" might never have culturally evolved.

A classical example of relative frequency is the number nA of successful trials in
N trials. A biological example is the number of blue-eyed genes or alleles at all
such chromosomal loci in a gene pool. The new way of expressing these relative
frequencies S(B, A) is the degree to which all trials are successes or all genes at a
specific chromosomal location are for blue-eyedness. If the distinction between
successful and unsuccessful trials is not clear cut, the resulting fuzzy relative
frequency S(B, A) may be real-valued. The frequency structure remains since A is a
subset of B (since B = X invariably in practice).

Where did the "randomness" go? The relative frequency S(B, A) describes a fuzzy
state of affairs, the degree to which B belongs to the power set of A: S(B, A)=
m2A(B). (Consider B=X and A=(x 2} in the unit square: the frequency S(X,A)
corresponds by the Pythagorean Theorem to the ratio of the left cube edge and
the long diagonal to X.) Whether S(B, A) is a rational or irrational number seems
a technicality, a matter of fineness of quantization, if it is not zero or one. In
practice only physical objects like tossed coins and DNA strands are involved.
Their individual behavior might be fully determined by a system of differential
equations.

The key quantity is the measure of overlap M(AnB). This count does not
involve "randomness". It counts which elements are identical or similar and to
what degree. The phenomena themselves are deterministic. The corresponding
frequency number that summarizes the deterministic situation is also deterministic.
The same situation always gives the same number. The number may be used also
to place bets or to switch a phone line, but it remains part of the description of a
specific state of affairs. The deterministic subsethood derivation of relative
frequency eliminates the need to invoke an undefined "randomness" to further
describe the situation.

The identification of relative frequency with probability is cultural, not logical.
This may take getting used to after hundreds of years of casting gambling
intuitions as matters of probability and a century of building probability into the
description of the universe. It is ironic that to date every assumption of
probability-at least in the relative frequency sense of science, engineering,
gambling, and daily life-has actually been an invocation of fuzziness.
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9. BAYESIAN POLEMICS

Bayesian probabilists interpret probability as a subjective state of knowledge. In
practice'they use relative frequencies (subsethood degrees) but only to approximate
these "states of knowledge".

Bayesianism is a polemical doctrine. Bayesians claim that they, and only they,
vtse 11l and only the available uncertainty information in the description of
uncertain phenomena. This stems from the Bayes Theorem expansion of the "a
posteriori" conditional probability P(HiE), the probability that Hi, the ith of
k-many disjoint hypotheses {Hj}, is true when evidence E is observed:

P(H I E)= P(E n Hi)
P(E)

P(E H)P(H)
P(E)

P(EI H)P(H)
=, IP(EI H)P(H)'

since the hypotheses partition the sample space X: H1 uH 2 u.u Hk =X and
Hi cjH=o if i:j.

Conceptually, Bayesians use all available information in computing this pos-
terior distribution by using the "a priori" or prior distribution P(Hi) of the
hypotheses. Mathematically, the Bayesian approach clearly stems from the ratio
form of the conditional probability.

The Subsethood Theorem trivially implies Bayes Theorem when the hypotheses
{Hi) and evidence E are nonfuzzy subsets. More important, the Subsethood
Theorem implies the Fuzzy Bayes Theorem in the more interesting case when the
observed data E is fuzzy:

S(E, Hi) =S(H,, E)M(H,)
= IS(H, E)M(H,)

S(Hi, E)fi

'=.1 S(HE)Jf4

where

fi M(H) M(HI) Si)
M(X) n

is the "relative frequency" of Hi, the degree to which all the hypotheses are H,. So
the Subsethood Theorem allows fuzzyists to be "Bayesians" as well.

The Subsethood Theorem implies inequality when the partitioning hypotheses
are fuzzy. For instance, if k = 2, H' is the complement of an arbitrary fuzzy set H,
and evidence E is fuzzy, then"0 the occurrence of nondegenerate hypothesis
overlap and underlap gives a lower bound on the posterior subsethood:
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S(E, H) > S(H, E)fH
( S(H, E)fH + S(H1, E)fm,'

where fH=S(X, H). The lower bound is an increasing function of M(H), a
decreasing function of M(H). Since a like lower bound holds for S(E, H), adding
the two posterior subsethoods gives the additive inequality:

S(E, H) + S(E, H) _ 1,

an inequality arrived at independently by Zadeh"7 by directly defining a "relative
sigma-count" as the subsethood measure given by the Subsethood Theorem. If H
is nonfuzzy, equality holds as in the additive law of conditional probability:

P(HIE)+ P(Hcl E)= 1.

The Subsethood Theorem implies a deeper Bayes Theorem for arbitrary fuzzy
sets, the Odds-Form Fuzzy Bayes Theorem:

S(AncH,A 2 ) S(A2 c-H,Aj) S(HA 2)
S(A,ncH,Ac2) S(A'nrHAj)S(H,A')"

This theorem is proved directly by replacing the subsethood terms on the
righthand side with their equivalent ratios of counts, canceling like terms three
times, multiplying by M(AIrH)/M(AtenH), rearranging, and applying the Sub-
sethood Theorem a second time.

We have now developed enough fuzzy theory to examine critically the recent
anti-fuzzy polemics of Lindley 3 and Jaynes6 (and thus Cheeseman2 who uses
Jaynes' arguments). To begin we observe four more corollaries of the Subsethood
Theorem:

i) O<S(H,A)< I,

ii) S(H,A)=I ifHcA,

iii) S(H, A 1 u A2 ) = S(H, A,) + S(H, A 2 ) - S(H, A cA),

iv) S(H, A , A2 ) =S(H, A )S(AI n H, A2 ).

Each relationship follows from the ratio form of S(A, B). The third relation-
ship uses the additivity of the count M(A), which follows from min(x,y)+
max(x,y) =x +y.

Now make the notational identification S(H, A) = P(AI H). We then obtain the
defining relationships of conditional probability proposed by Lindley:1 3

Convexity: O<P(AJH)<I and P(AIH)=l if Himplies A,

Addition: P(Au uAzIH)=P(A1 IH)+P(A211)-P(A nA 2lH),
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Multiplication: P(A I nA2IH) =P(A IJI)P(A2 1Ir cH).

"From these three rules", Lindley13 tells us,

all of the many, rich and wonderful results of the probability calculus follow. They may be described as
the axioms of probability.

Lindley takes these as "unassailable" axioms:

We really have no choice about the rula governing our measurement of uncertainty: they arc dictated
to us by the inexorable laws of logic.

Lindley proceeds to build a "coherence" argument around the Odds-Form Bayes
Theorem, which he correctly deduces from the axioms as the equality:

P(A21A, nhI)=P(AtlA n I) +(A21H)
P(A'I A1 nH) P(A1 A2 n'H) P(A2 IH)'

where here we interpret A' as not-A. "Any other procedure", we are told, "is
incoherent." This polemic evaporates in the face of the above four subsethood
corollaries and the Odds-Form Fuzzy Bayes Theorem. Ironically, rather than
establish the primacy of axiomatic probability, Lindley seems to argue that it is
fuzziness in disguise.

Another source of Bayesian probability polemic2 is maximum entropy estima-
tion. Here the axiomatic argument rests on the so-called Cox's Theorem.3 Cox's
Theorem is best presented by its most vocal proponent, physicist E. T. Jaynes.

According to Jaynes:

Cox proved that any method of inference in which we represent degrees of plausibility by real numbers.
is necessarily either equivalent to Laplace's, or inconsistent,

where Laplace is cited as an early Bayesian probabilist. In fact Cox used bivalent
logic (Boolean algebra) and other assumptions to show that, again according to
Jaynes, the "conditions of consistency can be stated in the form of functional
equations," namely the probabilistic product and sum rules:

P(Ar BIC)=P(AIBnC)P(BjQ,

P(BjA)+P(BYA)= 1.

The Subsethood Theorem implies

S(C, A r B) = S(B rC, A)S(C, B),

S(A, B)+ S(A, B)> 1,

with, as we lvtve seen, equality holding for the second subsethood relationship
when B is nonfuzzy, which is the case in the Cox-Jaynes setting.

In the probabilistic case overlap and underlap are degenerate. So
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P(A n A'IB)=0IB) = P()=o,
P(B)

and P(BIACA')==P(B10) is undefined. Yet in general S(B,AnA')>O and
S(A n A', B) is defined when A is fuzzy and B is fuzzy or nonfuzzy.

Jaynes' claim is either false or concedes that probability is a special case of
fuzziness. For strictly speaking, since the subsethood measure S(A, B) satisfies the
multiplicative and aciitive laws specified by Cox and yet differs from the
conditional probability P(BIA), Jaynes' claim is false.

Presumably Jaynes was unaware of fuzzy sets. He seems to suggest that the only
alternative uncertainty theory is the frequency theory of probability, a theory we
have seen reduced to the subsethood measure S(X, A). So if we restrict consider-
ation to nonfuzzy sets A and B, equality holds in the above subsethood relations
and Jaynes is right: probability and fuzziness coincide. But fuzziness exists, indeed
abounds, outside this restriction and classical probability theory does not. So fuzzy
theory is an extension of probability theory. Equivalently, probability then is a
special case of fuzziness.

Incidentally, when one examines Cox's actual arguments,3 one finds that Cox
assumes that the uncertainty combination operators in question are continuously
twice differentiable! Min and max are not twice differentiable. Technically, Cox's
theorem does not apply.

10. THE ENTROPY-SUBSETHOOD THEOREM

The Fuzzy Entropy Theorem and the Subsethood Theorem were independently
derived from first principles, from sets-as-points unit-cube geometry. Both
theorems involve ratios of cardinalities. A connection is inevitable.

The Entropy-Subsethood Theorem shows that the connection occurs ir terms of
overlap A nA and underlap Au AC (what else?). The theorem says fuzzy entropy
can be eliminated in favor of subsethood. So subsethood emerges as the
fundamental, characterizing quantity of fuzziness-and, arguably, of probability as
well.

ENTROPY-SUBSETHOOD THEOREM

E(A) = S(A u Ac, A n A).

The theorem is proved by replacing B and A in the Subsethood Theorem
respectively with overlap AnA' and underlap A uA'. Since overlap is a
(dominated-membership function) subset of underlap, the intersection of the two
sets is just overlap.

The Entropy-Subsethood Theorem is a peculiar relationship. It says that
fuzziness is the degree to which the superset A uAc is a subset of its own subset
AriA', the extent to which the whole is a part of one of its own parts, a
relationship forbidden by Western logic.

This relationship violates our ingrained Venn-diagram intuitions of unambi-
guous set inclusion. Only the midpoint of Il yields total containment of underlap
in overlap. The cube vertices yield no containment. This parallels in the extreme
the relative frequency relationship S(X,A)=nA/N, where a nonfuzzy superset X is
to some degree a subset of one of its nonfuzzy subsets A.
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igure 11 Entropy-Subsethood Theorem in two dimensions. Just as the long diagonals have equal
length, d(A, Al =d(A v A'.A n Al = d* =M(A uAC)-M(A n Aj, the shortest distance from A uAC to the

fuzzy power set of ArnA'.

Figure 11 illustrates the Entropy-Subsethood Theorem. It shows that d*, the
shortest distance from underlap AuAC to the hyper-rectangle defining the fuzzy
power set of overlap A rAC, is equivalent to d(AuA', A ri A' =d(A, A') and to a
difference of vector magnitudes: d* = M(A u A') - M(A n A').

The Entropy-Subsethood Theorem implies that no probability measure
measures fuzziness. For the moment, suppose not. Suppose fuzzy entropy measures
nothing new; fuzziness is simply disguised probability. Suppose, as Lindley' 3

claims, that probability theory "is adequate for all problems involving uncer-
tainty." So there exists some probability measure P such that P = E. P cannot be
identically zero because P(X) = 1. Then there is some A such that P(A) = E(A) >0.
But in a probability space there is no overlap or underlap: A nAC= 0 and
Ak A" = X.

The Entropy-Subsethood Theorem then implies that 0<P(A)=E(A)=
S(A u A', A n A')=S(X, 0). The only way X can be a subset to any degree of the
empty set is if X itself, and hence A, is empty: X = A = 0. Then the sure event X is
impossible: P(X)=P(0)=0. Or the impossible event is sure: P(O)= I. Either
outcome is a bivalent contradiction, impervious to normalization. So there exists
no probability measure P that measures fuzziness. Fuzziness exists.

This within-cube theory can be extended" to define a natural fuzzy integral with
respect to the fuzzy counting measure M. A more practical extension" is to
mappings between fuzzy cubes, in particular to fuzzy associative memories. In
short, a fuzzy set is a point in a unit hypercube I". A fuzzy system S: I'---P is a
mapping between cubes. Fuzzy systems map fuzzy subsets of the input space X to
fuzzy subsets of the output space Y Fuzzy systems are tools of machine
intelligence, and can be applied to a wide range of control and decision problems.
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11. PRECISE PAST, FUZZY FUTURE 4

The boat of uncertainty reasoning is being rebuilt at sea. Plank by plank fuzzy
theory is beginning to gradually shape its design. Today only a few fuzzy planks
have been laid. But a hundred years from now, a thousand years from now, the
boat of uncertainty reasoning may little resemble the boat of today. Notions and
measures of overlap AncA' and underlap A uAC will have smoothed its rudder.
Amassed fuzzy applications, hardware, and products will have broadened its sails.
And no one on the boat will believe that there was a time when a concept as
simple, as intuitive, as expressive1 8 as a fuzzy set met with such impassioned
denial.

How would the world be different today if fuzziness had been developed, taught,
and applied before probability theory? Suppose the fuzzy framework was worked
out at the time of Galileo of Laplace. Suppose Isaac Newton included an appendix
on the geometry of fuzzy sets in his Principia. What would be different today?

Reasoning systems in machine intelligence would surely be different. So would
be the range of automatic control devices. There would be many more of them,
and they would more accurately reflect our reasoning processes than do our
current decision trees and thermostats. Western belief systems might be more
Eastern, and vice versa. (How many Westerners can name five Eastern books?)
More of social science might be systematized. Historical tendencies would have
been easier to articulate and defend. Communication, signal processing, and
computational hardware might be built around the fit. Our physical explorations
of subatomic reality, antimatter, and the spacetime fabric may have led to different
times and places. Relative frequencies might be considered the everyday appli-
cation of fuzzy subsethood. Besides betting on games of chance or frequency,
betting on games of degree-perhaps involving simulated chaotic trajectories in
unit cubes (or guppies swimming in hand-held cubical aquaria) or real-valued
dice-might help support the economy of Las Vegas.

As the total amount of information in society continues to grow exponentially,
the velocity of scientific and cultural change increases. Cultural change that once
took centuries can now occur in a few years, perhaps soon in a single year. A
current engineering example of this velocity of change is Moore's Law, the
doubling of silicon-chip transistor density every one to two years.

One tendency of this inforniation acceleration is to leave further behind what
has already been explored. The complementary tendency is to soon experiment
with systems that may at present seem distant, impractical, even absurd. In this
light the recent developments in fuzzy theory and in fuzzy applications and
hardware will surely affect the science, engineering, and culture of the future. The
question is to what degree.
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Abstract

We developed fuzzy and neural-network control systems to back up a simulated truck,

and truck-and-trailer, to a loading dock in a planar parking lot. The fuzzy systems per-

formed well until we randomly removed over 50 % of their fuzzy-associative-memory (FAM)

rules. They also performed well when we replaced key FAM equilibration rules with de-

structive or "sabotage" rules. We trained the neural network systems with the supervised

backpropagato., learning algorithm and tested their robustness by removing random sub-

sets of training data in learning sequences. The neural systems performed well but required

extensive computation for training. We used unsupervised differential competitive learn-

ing (DCL), and product-space clustering, to adaptively generate FAM rules from training

data. The original fuzzy and neural control systems generated trajectory data. The DCL

system rapidly recovered the underlying FAM rules. Product-space clustering converted

the neural truck systems into structured sets of FAM rules that approximated the neural

system's behavior.



Fuzzy and Neural Control Systems

We construct fuzzy and neural control systems directly from control data, but from

different types of control data. Fuzzy systems use a small number of structured linguistic

input-output samples from an expert or from some other adaptive estimator. Neural

systems use a large number of numeric input-output samples from the control process or

from some other database. Adaptive fuzzy systems also use numeric control data.

Figure 1 illustrates this difference. The neural system estimates function f : X - Y

from several numerical point samples (xi, y1). The fuzzy system estimates f from a few

fuzzy set samples or fuzzy associations (A., Bi).

(a) (b)

FIGURE 1 Geometry of neural and fuzzy function estimation. The neural
approach (a) uses several numerical point samples. The fuzzy approach (b)
uses a few fuzzy set samples.

Fuzzy and neural systems offer a key advantage over traditional control approaches.

They offer model-free estimation of the control system. The user need not specify how

the controller's output mathematically depends on its input. Instead the user provides a

few common-sense associations of how the control variables behave. Or the user provides

a statistically representative set of numerical training samples. Even if a math-model

controller is available, fuzzy or neural controllers may prove more robust and easier to

modify.

Which system, fuzzy or neural, performs better for which type of control problem de-
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pends on the type and availability of sample data. If experts provide structured knowledge

of the control process, or if sufficient numerical training samples are unavailable, the fuzzy

approach may be preferable. We can construct a fuzzy control system with comparative

ease when experts or fuzzy engineers provide accurate structured knowledge. A fuzzy con.

trol system seems a reasonable benchmark in such cases, even if we can develop a neural

controller or math-model controller.

If we have representative numerical data but not structured expertise, the neural ap-

proach may be preferable. Or a statistical regression approach may be more appropriate.

The data simply tell their own story-if there is a story to tell. Yet even here we can

use a hybrid fuzzy-neural system, an adaptive fuzzy system. We can use the numerical

data to generate fuzzy associative memory (FAM) rules. The FAM rules can then form the

skeleton of a fuzzy control architecture. In short, if structured knowledge is unavailable,

estimate it. This may be more practical than it would appear because of the small number

of control FAM rules needed to reliably control many realworld processes.

How can we compare fuzzy and neural controllers? Abstract comparison proves difficult

because both approaches build a control black box in different ways. That they build black

boxes distinguishes them from math-model controllers. It also suggests we can compare

them, at least approximately, by their black-box control performance.

Each control system generated an output control surface as it ranged over the common

input space of parameter values. Figure 5 below shows three-dimensional control surfaces

for the fuzzy and neural controllers. For control systems with few input parameters with

moderately quantized ranges, we can store both fuzzy and neural controllers--or rather

their quantized control surfaces-as decision look-up tables. Then once we specify a system

performance criterion, we can in principle quantitatively compare the controllers.

Comparing system trajectories proved more complicated. In the case at hand, we

wanted to back up a truck, and truck-and-trailer, to a loading dock. We can measure and

compare the quality and quantity of the truck trajectory, perhaps with mean-squared er-

ror criteria. Intuitively, we preferred smooth short trajectories to jagged long trajectories.

Reaching the loading-dock goal was also important. In practice it is the most impor-

tant performance requirement. We must balance the trajectory type with the trajectory
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destination, and this reduces to the pragmatic issue of balancing means and ends.

Below we develop a simple fuzzy control system and a simple neural control system

for backing up a truck, and truck-and-trailer, in an open parking lot. The recent neural

network truck backer-upper simulation of Nguyen and Widrow [1989] motivated our choice

of control problem.

The fuzzy control system compared favorably with the neural controller in terms of

black-box development effort, black-box computational load, smoothness of truck trajec-

tories, and robustness.

We studied robustness of the fuzzy control systems in two ways. We deliberately added

confusing FAM rules-"sabotage" rules-to the system, and we randomly removed differ-

ent subsets of FAM rules. We studied robustness of the neural controller by randomly

removing different portions of the training data in learning sequences. We also converted

the neural control systems to structured FAM-bank systems.

Backing up a truck

Figure 2 shows the simulated truck and loading zone. The truck corresponds to the cab

part of the neural truck in the Nguyen-Widrow neural truck backer-upper system. The

three state variables 4,, z, and y exactly determine the truck position. 0 specifies the angle

of the truck with the horizontal. The coordinate pair (x,y) specifies the position of the

rear center of the truck in the plane.

The goal was to make the truck arrive at the loading dock at a right angle (ofj = 900)

and to align the position (x,y) of the truck with the desired loading dock (xf,yf). We

considered only backing up. The truck moved backward by some fixed distance at every

stage. The loading zone corresponded to the plane [0,100] x [0,1001, and (xf,yf) equaled

(50,100).

At every stage the fuzzy and neural controllers should produce the steering angle 0 that

backs up the truck to the loading dock from any initial position and from any angle in the

loading zone.

4



loading dock (xf. Y)

rear/ j ,... y)

front

FIGURE 2 Diagram of simulated truck and loading zone.

Fuzzy Truck Backer-Upper System

We first specified each controller's input and output variables. The input variables were

the truck angle 4) and the x-position coordinate z. The output variable was the steering-

angle signal 0. We assumed enough clearance between the truck and the loading dock so

we could ignore the y-position coordinate. The variable ranges were as follows:

O< z 100

-90 < _ < 270

-30 < 0 < 30

Positive values of 0 represented clocxwise rotations of the steering wheel. Negative values

represented counterclockwise rotations. We discretized all values to reduce computation.

The resolution of 4 and 0 was one degree each. The resolution of z was 0.1.

Next we specified the fuzzy-set values of the input and output fuzzy variables. The

fuzzy sets numerically represented linguistic terms, the sort of linguistic terms an expert

might use to describe the control system's behavior. We chose the fuzzy-set values of the

fuzzy variables as follows:
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Angle 4, x-position z Steering-angle signal O

RB: Right Below LE: Left NB: Negative Big

RU: Right Upper LC: Left Center NM: Negative Medium

RV: Right Vertical CE: Center NS: Negative Small

VE: Vertical RC: Right Center ZE: Zero

LV: Left Vertical RI: Right PS: Positive Small

LU: Left Upper PM: Positive Medium

LB: Left Below PB: Positive Big

Fuzzy subsets contain elements with degrees of membership. A fuzzy membership

function mA : Z - [0, 11 assigns a real number between 0 and I to every element z in

the universe of discourse Z. This number mA(z) indicates the degree to which the object

or data z belongs to the fuzzy set A. Equivalently, mA(z) defines the fit (fuzzy unit) value

[Kosko, 19861 of element z in A.

Fuzzy membership functions can have different shapes depending on the designer's pref-

erence or experience. In practice fuzzy engineers have found triangular and trapezoidal

shapes help capture the modeler's sense of fuzzy numbers and simplify computation. Fig-

ure 3 shows membership-function graphs of the fuzzy subsets above. In the third graph,

for example, 0 = 20 is Positive Medium to degree 0.5, but only Positive Big to degree 0.3.

In Figure 3 the fuzzy sets CE, VE, and ZE are narrower than the other fuzzy sets.

These narrow fuzzy sets permit fine control near the loading dock. We used wider fuzzy

sets to describe the endpoints of the range of the fuzzy variables 4,, x, and 0. The wider

fuzzy sets permitted rough control far from the loading dock.

Next we specified the fuzzy "rulebase" or bank of fuzzy associative memory (FAM) rules.

Fuzzy associations or "rules" (A, B) associate output fuzzy sets B of control values with

input fuzzy sets A of input-variable values. We can write fuzzy associations as antecedent-

consequent pairs or IF-TttEN statements.

In the truck backer-upper case, the FAM bank contained the 35 FAM rules in Figure 4.

For example, the FAM rule of the left upper block (FAM rule 1) corresponds to the following
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FIGURE 3 Fuzzy membership functions for each linguistic fuzzy-set value.
To allow finer control, the fuzzy sets that correspond to near the loading dock
are narrower than the fuzzy sets that correspond to far from the loading dock.

fuzzy association:

IF x=LE AND A=RB, THEN 0 = PS.

FAM rule 18 indicates that if the truck is in near the equilibrium position, then the

controller should not produce a positive or negative steering-angle signal. The FAM rules

in the FAM-bank matrix reflect the symmetry of the controlled system.

For the initial condition x = 50 and q = 270, the fuzzy truck did not perform well.

The symmetry of the FAM rules and the fuzzy sets cancelled the fuzzy controller output in

a rare saddle point. For this initial condition, the neural controller (and truck-and-trailer

below) also performed poorly. Any perturbation breaks the symmetry. For example, the

rule (If x = 50 and 0 = 270, then 0 -- 5) corrected the problem.

The three-dimensional control surfaces in Figure 5 show steering-angle signal outputs

0 that correspond to all combinations of values of the two input state variables -0 and

x. The control surface defines the fuzzy controller. In this simulation the correlation-

minimum FAM inference procedure, discussed in (Kosko, 1990a], determined the fuzzy

control surface. If the control surface changes with sampled variable values, the system
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X

LE LC CE RC RI

RI PS 2 PM 3 PM PB PB

6 7
RU NS PS PM PB PB

RV NM NS PS PM PB

4) VE NM NM 'SZE PM PM

LV NB NM NS PS PM

LU NB NB NM NS PS

LS NB NB NM NM ! NS

FIGURE 4 FAM-bank matrix for the fuzzy truck backer-upper controller.

FAM rule 2 (W.,, RB; PM)O

- X

(a) (b)

FIGURE 5 (a) Control surface of the fuzzy controller. Fuzzy-set values
determined the input and output combination corresponding to FAM rule 2
(IF xz=LC AND 4=RB, THEN O=PM). (b) Corresponding control surface of
the neural controller for constant value yz20.
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behaves as an adaptive fuzzy controller. Below we demonstrate unsupervised adaptive

control of the truck and the truck-and-trailer systems.

Finally, we determined the output action given the input conditions. We used the

correlation-minimum inference method illustrated in Figure 6. Each FAM rule produced

the output fuzzy set clipped at the degree of membership determined by the input condi-

tions and the FAM rule. Alternatively, correlation-product inference [Kosko, 1990a] would

combine FAM rules multiplicatively. Each FAM rule emitted a fit-weighted output fuzzy

set Oj at each iteration. The total output 0 added these weighted outputs:

o = Z (1)
i

= E-min(fi,S,) , (2)
i

where f, denotes the antecedent fit value and Si represents the consequent fuzzy set of

steering-angle values in the ith FAM rule. Earlier fuzzy systems combined the output

sets O with pairwise maxima. But this tends to produce a uniform output set 0 as the

number of FAM rules increases. Adding the output sets Oi invokes the fuzzy version of

the Central Limit Theorem. This tends to produce a symmetric, unimodal output fuzzy

set 0 of steering-angle values.

Fuzzy systems map fuzzy sets to fuzzy sets. The fuzzy control system's output defines

the fuzzy set 0 of steering-angle values at each iteration. We must "defuzzify" the fuzzy

set 0 to produce a numerical (point-estimate) steering-angle output value 0.

As discussed in [Kosko, 1990a], the simplest defuzzification scheme selects the value

corresponding to the maximum fit value in the fuzzy set. This mode-selection approach

ignores most of the information in the output fuzzy set and requires an additional decision

algorithm when multiple modes occur.

Centroid defuzzification provides a more effective procedure. This method uses the

fuzzy centroid # as output:
p

EOi mo(O)
j=1 (3)

E mo (0j)
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FIGURE 6 Correlation-minimum inference with centroid defuzzification
method. Then FAM-rule antecedents combined with AND use the minimum
fit value to activate consequents. Those combined with OR would use the
maximum fit value.

where 0 defines a fuzzy subset of the steering-angle universe of discourse 0 = {01,... ,OP}.

The central-limit-theorem effect produced by adding output fuzzy set Oi benefits both max-

mode and centroid defuzzification. Figure 6 shows the correlation-minimum inference and

centroid defuzzification applied to FAM rules 13 and 18. We used centroid defuzzification

in all simulations.

With 35 FAM rules, the fuzzy truck controller produced successful truck backing-up

trajectories starting from any initial position. Figure 7 shows typical examples of the fuzzy-

controlled truck trajectories from different initial positions. The fuzzy control system did

not use ("fire") all FAM rules at each iteration. Equivalently most output consequent sets

are empty. In most cases the system used only one or two FAM rules at each iteration.

The system used at most 4 FAM rules at once.

Neural Truck Backer-Upper System

The neural truck backer-upper of Nguyen and Wi. --a [19891 consisted of multilayer
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(a) (b) (c)

FIGURE 7 Sample truck trajectories of the fuzzy controller for initial

positions (x,y,O): (a) (20,20,30), (b) (30,10,220), and (c) (30,40,-10).

feedforward neural networks trained with the backpropagation gradient-descent (stochastic-

approximation) algorithm. The neural control system consisted of two neural networks:

the controller network and the truck emulator network. The controller network produced

an appropriate steering-angle signal output given any parking-lot coordinates (z, Y), and

the angle O. The emulator network computed the next position of the truck. The emulator

network took as input the previous truck position and the current steering-angle output

computed by the controller network.

We did not train the emulator network since we could not obtain "universal" synaptic

connection weights for the truck emulator network. The barkpropagation learning algo-

rithm did not converge for some sets of training samplcs. The number of training samples

for the emulator network might exceed 3000. For example, the combinations of training

samples of a given angle 4, z-position, y-position, and steering angle signal 0 might cor-

respond to 3150 (18 x 5 x 5 x 7) samples depending on the division of the input-output

product space. Moreover, the training samples were numerically similar since the neuronal

signals assumed scaled values in [0,11 or [-1,11. For example, we treated close values, such

as 0.40 and 0.41, as distinct sample values.

Simple kinematic equations replaced the truck emulator network. If the truck moved
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backward from (z,y) to (z',y') at an iteration, then

X = + rcos(k') , (4)

= y + rsin(') (5)

0' = 0+0 (6)

r denotes the fixed driving distance of the truck for all backing movements. We used

equations (4)-(6) instead of the emulator network. This did not affect the post-training

performance of the neural truck backer-upper since the truck emulator network back-

propagated only errors.

We trained only the controller network with backpropagation. The controller network

used 24 "hidden" neurons with logistic sigmoid functions. In the training of the truck-

controller, we estimated the ideal steering-angle signal at each stage before we trained the

controller network. In the simulation, we used the arc-shaped truck trajectory produced

by the fuzzy controller as the ideal trajectory. The fuzzy controller generated each training

sample (X, y, .S, 0) at each iteration of the backing-up process. We used 35 training sample

vectors and needed more than 100,000 iterations to train the controller network.

Figure 5b shows the resulting neural control surface for y = 20. The neural control

surface shows less structure than the corresponding fuzzy control surface. This reflects

the unstructured nature of black-box supervised learning. Figure 8 shows the network

connection topology for our neural truck backer-upper control system.

Figure 9 shows typical examples of the neural-controlled truck trajectories from sev-

eral initial positions. Even though we trained the neural network to follow the smooth

arc-shaped path, some learned truck trajectories were non-optimal.

Comparison of Fuzzy and Neural Systems

As shown in Figure 7 and 9, the fuzzy controller always smoothly backed up the truck

but the neural controller did not. The neural-controlled truck sometimes followed an

irregular path.

12



Truck Controller

XXk k

Yk+lI

24 hidden units

FIGURE 8 Topology of our neural control system.

(a) (b) (c)

FIGURE 9 Sample truck trajectories of the neural controller for initial
positions (x,y,4): (a) (20,20,30), (b) (30,10,220), and (c) (30,40,-10).
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(a) (b)

FIGURE 10 The fuzzy truck trajectory after we replaced the key steady-
state FAM rule 18 by the two worst rules: (a) IF z = CE AND qS VE,
THEN 0 = PB, and (b) IF x = CE AND 0 = VE, THEN 0 = NB.

Training the neural control system was time-consuming. The backpropagation algo-

rithm required thousands of back-ups to train the controller network. In some cases, the

learning algorithm did not converge.

We "trained" the fuzzy controller by encoding our own common sense FAM rules. Once

we develop the FAM-rule bank, we can compute control outputs from the resulting FAM-

bank matrix or control surface. The fuzzy controller did not need a truck emulator and

did not require a math model of how outputs depended on inputs.

The fuzzy controller was computationally lighter than the neural controller. Most

computation operations in the neural controller involved the multiplication, addition, or

logarithm of two real numbers. In the fuzzy controller, most computational operations

involved comparing and adding two real numbers.

Sensitivity Analysis

We studied the sensitivity of the fuzzy controller in two ways. We replaced the FAM

rules with destructive or "sabotage" FAM rules, and we randomly removed FAM rules.
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(a) (b)

FIGURE 11 Fuzzy truck trajectory when (a) no FAM rules are removed
and (b) FAM rules 7, 13, 18 and 23 are removed.

We deliberately chose sabotage FAM rules to confound the system. Figure 10 shows the

trajectory when two sabotage FAM rules replaced the important steady-state FAM rule-

FAM rule 18: the fuzzy controller should produce zero output when the truck is nearly in

the correct parking position. Figure 11 shows the truck trajectory after we removed four

randomly chosen FAM rules (7, 13, 18, and 23). These perturbations did not significantly

affect the fuzzy controller's performance.

We studied robustness of each controller by examining failure rates. For the fuzzy

controller we removed fixed percentages of randomly selected FAM rules from the system.

For the neural controller we removed training data. Figure 12 shows performance errors

averaged over ten typical back-ups with missing FAM rules for the fuzzy controller and

missing training data for the neural controller. The missing FAM rules and training data

ranged from 0 % to 100 % of the total. In Figure 12a, the docking error equaled the

Euclidean distance from the actual final position (4k, z, y) to the desired final position (Of,

Xt, Yf):

Docking Error = V( -)2+ (z ! - Z ) + (y - Y) (7)

In Figure 12b, the trajectory error equaled the ratio of the actual trajectory length of the

15~



Clocking eror Trajectory error

2o

202

(a) Fuzzy onroller

Docking error Trajectory error

Go

46

1.5

6 16 iO0 a ISO
S Data ren~o~d S Dat. roed

(b) BP-Neural controller

FIGURE 12 Comparison of robustness of the controllers: (a) Docking and
Trajectory error of the fuzzy controller, (b) D,,cking and Trajectory error of
the neural controller.

truck divided by the straight line distance to the loading dock:

Trajectory Error =length of truck trajectory
distance(initial position, desired final position) (8)

Adaptive Fuzzy Truck Backer-Upper

Adaptive FAM (AFAM) systems generate FAM rules directly from training data. A

one-dimensional FAM system, S : I-- IP, defines a FAM rule, a single association of the

form (Ai, Bi). In this case the input-output product space equals I" x IP. As discussed in

[Kosko, 1990a], a FAM rule (A,, Bi) defines a cluster or ball of points in the product-space

cube In X Ip centered at the point (Ai, Bj). Adaptive clustering algorithms can estimate the
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unknown FAM rule (A, B1) from training samples in R2 . We used differential competitive

learning (DCL) to recover the bank of FAM rules that generated the truck training data.

We generated 2230 truck samples from 7 different initial positions and varying an-

gles. We chose the initial positions (20,20), (30,20), (45,20), (50,20), (55,20), (70,20), and

(80,20). We changed the angle from -600 to 2400 at each initial position. At each step, the

fuzzy controller produced output steering angle 0. The training vectors (z, 4), 0) defined

points in a three-dimensional product-space. x had 5 fuzzy set values: LE, LC, CE, RC,

and RI. 4) had 7 fuzzy set values: RB, RU, RV, VE, LV, LU, and LB. 0 had 7 fuzzy set

values: NB, NM, NS, ZE, PS, PM, and PB. So there were 245 (5 x 7 x 7) possible

FAM cells.

We defined FAM cells by partitioning the effective product-space. FAM cells near the

center were smaller than outer FAM cells because we chose narrow membership functions

near the steady-state FAM cell. Uniform partitions of the product-space produced poor

estimates of the original FAM rules. As in Figure 3, this reflected the need to judiciously

define the fuzzy-set values of the system fuzzy variables.

We performed product-space clustering with the version of DCL discussed in [Kosko,

1990a). If a FAM cell contained at least one of the 245 synaptic quantization vectors, we

entered the corresponding FAM rule in the FAM matrix.

Figure 13a shows the input sample distribution of (z,O). We did not include the

variable 0 in the figure. Training data clustered near the steady-state position (z = 50

and 4) = 900). Figure 13b displays the synaptic-vector histogram after DCL classified 2230

training vectors for 35 FAM rules. Since successful FAM system generated the training

samples, most training samples, and thus most synaptic vectors, clustered in the steady-

state FAM cell.

DCL product-space clustering estimated 35 new FAM rules. Figure 14 shows the DCL-

estimated FAM bank and the corresponding control surface. The DCL-estimated control

surface visually resembles the underlying unknown control surface in Figure 5a. The two

systems produce nearly equivalent truck-backing behavior. This suggests adaptive product-

space clustering can estimate the FAM rules underlying expert behavior in many cases,

even when the expert or fuzzy engineer cannot articulate the FAM rules.
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FAM rules
(a) Input data distribution (b) Synaptic-vector histogram

FIGURE 13 (a) Input data distribution, (b) Synaptic-vector histogram.
Differential competitive learning allocated synaptic quantization vectors to
FAM cells. The steady-state FAM cell (CE, VE; ZE) contained the most
synaptic vectors.

x
LE LC CE RC RI

RB PS PM PM PB PB

RU ZE PM PM PB PB

RV NS ZE PS PM PB

* E NM NM IZE PM IPM

LV NB NB NS PS PS

LU NB NB NB NS PS

LB [NB NB NM NM NS

(a) (b)

FIGURE 14 (a) DCL-estimated FAM bank. (b) Corresponding control
surface.
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RU NM ZE PM PB PB

RV NM NM NS PS PB

VE NM NM NM ZE PB

LV NM NM NM NS PB

LU NM NM NM NM PM ()

LB NM NM NM NM NM X

(a) (b)

FIGURE 15 (a) FAM bank generated by the neural control surface in
Figure 5b. (b) Control surface of the neural BP-AFAM system in (a).

We also used the neural control surface in Figure 5b to estimate FAM rules. We divided

the input-output product-space into FAM cells as in the fuzzy control case. If the neural

control surface intersected the FAM cell, we entered the corresponding FAM rule in a FAM

bank. We averaged all neural control-surface values in a square region over the two input

variables z and 6. We assigned the average value to one of 7 output fuzzy sets. Figure 15

shows the resulting FAM bank and corresponding control surface generated by the neural

control surface in Figure 5b. This new control surface resembles the original fuzzy control

surface in Figure 5a more than it resembles the neural control surface in Figure 5b. Note

the absence of a steady-state FAM rule in the FAM matrix in Figure 5a.

Figure 16 compares the DCL-AFAM and BP-AFAM control surfaces with the fuzzy

control surface in Figure 5a. Figure 16 shows the absolute difference of the control surfaces.

As expected, the DCL-AFAM system produced less absolute error than the BP-AFAM

system produced.

Figure 17 shows the docking and trajectory errors of the two AFAM control systems.

The DCL-AFAM system produced less docking error than the BP-AFAM system produced

for 100 arbitrary backing-up trials. The two AFAM systems generated similar backing-up

trajectories. This suggests that black-box neural estimators can defi, - the front-end of
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(a) (b)

FIGURE 16 (a) Absolute difference of the FAM surface in Figure 5a and
the DOL-estimated FAM surface in Figure 14b. (b) Absolute difference of the
FAM surface in Figure 5a and the neural-estimated FAM surface in Figure 15b.

FAM-structured systems. In principle we can use this technique to generate structured

FAM rules for any neural application. We can then inspect and refine these rules and

perhaps replace the original neural system with the tuned FAM system.

Fuzzy Truck-and-Trailer Controller

We added a trailer to the truck system, as in the original Nguyen-Widrow model.

Figure 18 shows the simulated truck-and-trailer system. We added one more variable (cab

angle, Oc) to the three state variables of the trailerless truck. In this case a FAM rule takes

the form

IF z=LE AND Ot=RB AND ,=PO, THEN / = NS.

The four state variables x, y, Ot, and qSc determined the position of the truck-and-trailer

system in the plane. Fuzzy variable 0, corresponded to 40 for the trailerless truck. Fuzzy

variable Oc specified the relative cab angle with respect to the center line along the trailer.

OC ranged from -90 to 900. The extreme cab angles 900 and -90* corresponded to two
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(a) Docking Error

-- -. Back-up Trial

-DCL-AFAM (solid) :mean = 1.4449, s.d. = 2.2594
-BP-AFAM (dashed): mean= 6.6863, s.d. = 1.0665

(b) Trajectory ErrorIL-

- - - - - - - - - - - - -- - - - - - ---- - - s

Back-up Trial

- DCL-AFAM (solid) :mean =1.1075, s.d. = 0.0839
- BP-AFAM (dashed): mean =1.1453, s.d. = 0. 1016

FIGURE 17 (a) Docking errors and (b) Trajectory errors of the DCL-
AFAM and BP-AFAM control systems.
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(x . Y) (x , y) Cartesian coordinate of the rear end, 10,100.

(u , v) : Cartesian coordinate of the Joint.

) :Angle of the trailer with horizontal, [0,3601.
(Ov :Relative angie of the cab with trailer, [.90,901.

0 Steering angle, [-30,30).

. : Angle of the trailer updated at each step, (-30,301.
Oc \

FIGURE 18 Diagram of the simulated truck-and-trailer system.

"jackknife" positions of the cab with respect to the trailer. Positive 0, value indicated

that the cab resided on the left-hand side of the trailer. Negative value indicated that it

resided on the right-hand side. Figure 18 shows a positive angle value of .-

Fuzzy variables x, t, and 4c defined the input variables. Fuzzy variable /3 defined the

output variable. /3 measured the angle that we needed to update the trailer at each itera-

tion. We computed the steering-angle output 0 with the following geometric relationship.

With the output / value computed, the trailer position (x, y) moved to the new position
(z', Il):

x/ = + rcos(Ot + P), (9)

= y+rsin(t +,6), (10)

where r denotes a fixed backing distance. Then the joint of the cab and the trailer (u, v)

moved to the new position (u', v'):

U1 :z'-1cos(Ot+'8), (11)

V/ V- lsin(Ot +/3), (12)

where I denotes the trailer length. We updated the directional vector (dirU,dirV), which

defined the cab angle, by

dirU' dirU + Au, (13)

dirV' dirV + Av, (14)
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FIGURE 19 Membership graphs of the three fuzzy-set values of fuzzy
variable 0.
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FIGURE 20 FAM bank of the fuzzy truck-and-trailer control system.

where Au = u' - u, and Av = v' - v. The new directional vector (dirU', dirV') defines

the new cab angle 4[. Then we obtain the steering angle value as 0 = '- khh, where

Oc,h denotes the cab angle with the horizontal. We chose the same fuzzy-set values and

membership functions for/3 as we chose for 0. /3 ranged from -30* to 300. We chose the

fuzzy-set values of 0, as NE, ZR and PO as in Figure 19.

Figure 20 displays the 5 FAM-rule matrices in the FAM bank of the fuzzy truck-and-

trailer system. In Figure 20 we fixed the fuzzy variable x as LE, LC, CE, RC, and RI.

There were 735 (7 x 5 x 7 x 3) possible FAM rules and only 105 actual FAM rules.

Figure 21 shows typical backing-up trajectories of the fuzzy truck-and-trailer control
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(a) (b) (c)

FIGURE 21 Sample truck-and-trailer trajectories from the fuzzy con-
troller for initial positions (z, y, 4O, Ot): (a) (25, 30, -20, 30), (b) (80, 30,
210, -40), and (c) (70, 30, 200, 30).

system from different initial positions. The truck-and-trailer backed up in different direc-

tions depending on the relative position of the cab with respect to the trailer. The fuzzy

control systems successfully controlled the truck-and-trailer in jackknife positions.

BP Truck-and-Trailer Control Systems

We added the cab-angle variable Oc as to the backpropagation-trained neural truck con-

troller as an input. The controller network contained 24 hidden neurons with output vari-

able 3. The training samples consisted of 5-dimensional space of the form (x , Y, OI, 13 ).

We trained the controller network with 52 training samples from the fuzzy controller: 26

samples for the left half of the plane, 26 samples for the right half of the plane. We

used equations (9)-(14) instead of the emulator network. Training required more than

200,000 iterations. Some training sequences did not converge. The BP-trained controller

performed well except in a few cases. Figure 22 shows typical backing-up trajectories of

the BP truck-and-trailer control system from the same initial positions used in Figure 21.

We performed the same robustness tests for the fuzzy and BP-trained truck-and-trailer

controllers as in the trailerless truck case. Figure 23 shows performance errors averaged
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(a) (b) (c)

FIGURE 22 Sample truck-and-trailer trajectories of the BP-trained con-

troller for initial positions (z, y, 0t, 0 t): (a) (25, 30, -20, 30), (b) (80, 30, 210,

-40), and (c) (70, 30, 200, 30).

over ten typical back-ups from ten different initial positions. These performance graphs

resemble closely the performance graphs for the trailerless truck systems in Figure 12.

AFAM Truck-and-Trailer Control Systems

We generated 6250 truck-and-trailer data using the original FAM system in Figure 20.

We backed up the truck-and-trailer from the same initial positions as in the trailerless truck

case. The trailer angle 4kt ranged from -60* to 240*, and the cab angle .0, assumed only

the three values -45', 00, and 45*. The training vectors (x, 4kt, 0kc,3) defined points in the

four-dimensional input-output product-space. We nonuniformly partitioned the product

space into FAM cells to allow narrower fuzzy-set values near the steady-state FAM cell.

We used DCL to train the AFAM truck-and-trailer controller. The total number of FAM

cells equaled 735 (7 x 5 x 7 x 3). We used 735 synaptic quantization vectors. The DCL

algorithm classified the 6250 data into 105 FAM cells. Figure 24 shows the synaptic-vector

histogram corresponding to the 105 FAM rules. Figure 25 shows the estimated FAM bank

by the DCL algorithm. Figure 26 shows the original and DCL-estimated control surfaces

for the fuzzy truck-and-trailer systems.
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FIGURE 23 Comparison of robustness of the two truck-and-trailer con-
trollers: (a) Docking and trajectory error of the fuzzy controller, (b) Docking
and trajectory error of the HP controller.
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FIGURE 24 Synaptic-vector histogram for the AFAM truck- and-trailer
system.
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FIGURE 25 DCL-estimated FAM bank for the AFAM truck-and-trailer
system.

Figure 27 shows the trajectories of the original FAM and the DCL-estimated AFAM

truck-and-trailer controllers. Figure 27a and 27b show the two trajectories from the initial

position (z, y it, ia') = (30,30,10,45). Figure 27c and 27d show the trajectories from

initial position (60,30,210,-60). The original FAM and DCL-estimated AFAM systems

exhibited comparable truck-and-trailer control performance except in a few cases, where

the DCL-estimated AFAM trajectories were irregular.
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x=RC x =RI

(a) Original control surraces ror the truck-and-trailer system

x=RC x =RI

(b) DCL-estimated control surtaces for the truck-and-trailer system

FIGURE 26 (a) Original control surface (b) DCL-estimated control surface
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(a) Original FAM (h) DCL-estimated FAM

(c) Original FAM (d) DCL-estimated FAM

FIGURE 27 Sample truck-and-trailer trajectories from the original and
the DCL-estimated FAM systems starting at initial positions (x, y, ¢, 4c) =
(30,30,10,45) and (60,30,210,-60).

Conclusion

We qaic:dy engineered fuzzy systems to successfully back up a truck and truck-and-

trailer system in a parking lot. We used only common sease and error-nulling intuitions

to generate sufficient banks of FAM rules. These systems performed -41 until we removed

over 50 % of the FAM rules. This extreme robustness suggests that, for many estimation

and control problems, different fuzzy engineers can rapidly develop prototype fuzzy systems

that perform similarly and well.

The speed with which the DCL clustering technique recovers the underlying FAM bank

further suggests that we can likewise construct fuzzy systems or more complex, higher-

dimensional problems. For these problems we may have access to only inconip lete numer-

ical input-output data. Pure neural-network or statistical-process-control approaches may

generate systems with comparable performance. But these systems will involve far greater

computational effort, will be more difficult to mnodify, and will not provide a structured



representation of the system's throughput.

Our neural experiments suggests that whennver we mooel a system with a neural net-

work, for little extra computational cost we can genezate a set of structured FAM rules that

approximate the neural system's behavior. We can then tune the fuzzy system by refining

the FAM-rule bank with fuzzy-engineering rules of thumb and with further training data.
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APPENDIX: Product-space Clustering with Differential

Competitive Learning

Product-space clustering [Kosko, 1990a] is a form of stochastic adaptive vector quanti-

zation. Adaptive vector quantization (AVQ) systems adaptively quantize pattern clusters

in Rn. Stochastic competitive learning systems are neural AVQ systems. Neurons compete

for the activation induced by randomly sampled patterns. The corresponding synaptic fan-

in vectors adaptively quantize the pattern space R". The p synaptic vectors mi define the

p columns of the synaptic connection matrix M. M interconnects the n input or linear

neurons in the input neuronal field Fx to the p competing nonlinear neurons in the output

field Fy. Figure 28 below illustrates the neural network topology.

Learning algorithms estimate the unknown probability density function p(x), which de-

scribes the distribution of patterns in R". More synaptic vectors arrive at more probable

regions. Where sample vectors x are dense or sparse, synaptic vectors mi should be dense

or sparse. The local count of synaptic vectors then gives a nonparametric estimate of the

volume probability P(V) for volume V C R":

P(V) = JI p(x) dx (15)

Number of m E V
(16)

P

In the extreme case that V R n, this approximation gives P(V) p/p 1. For imnprob-

able subsets V, P(V) = O/p 0.
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Stochastic Competitive Learning Algorithms

The metaphor of competing neurons reduces to nearest-neighbor classification. The

AVQ system compares the current vector random sample x(t) in Euclidean distance to the

p columns of the synaptic connection matrix M, to the p synaptic vectors ml(t),..., mP(t).

If the jth synaptic vector mi(t) is closest to x(t), then the jth output neuron "wins" the

competition for activation at time t. In practice we sometimes define the nearest N synaptic

vectors as winners. Some scaled form of x(t) - mj(t) updates the nearest or "winning"

synaptic vectors. "Losers" remain unchanged: m1 (t + 1) = mi(t). Competitive synaptic

vectors converge to pattern-class centroids exponentially fast [Kosko, 1990b].

The following three-step process describes the competitive AVQ algorithm, where the

third step depends on which learning algorithm updates the winning synaptic vectors.

Competitive AVQ Algorithm

1. Initialize synaptic vectors: mi(O) = x(i), i = 1,...,p.

Sample-dependent initialization avoids many pathologies that can distort nearest-

neighbor learning.

2. For random sample x(t), find the closest or "winning" synaptic vector mi(t):

IImj(t) - x(t)J = min [mi(t) - x(t)JI (17)

where !1xll 2 = x' + ... + x' defines the squared Euclidean vector norm of x. We can

define the N synaptic vectors closest to x as "winners".

3. Update the winning synaptic vector(s) mj(t) with an appropriate learning algorithm.
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Differential competitive learning (DCL)

Differential competitive "synapses" learn only if the competing "neuron" changes its

competitive status [Kosko, 1990c]:

j :sj(yj)I S,(x,) - M,1 ] , (18)

or in vector notation,

rhj = j(yj) IS(x)-m,] , (19)

where S(x) = (Si(xl),...,Sn(an)) and nj = (mij,... ,mn). mji denotes the synaptic

weight between the ith neuron in input field Fx and the jth neuron in competitive field

Fy. Nonnegative signal functions Si and S1 transduce the real-valued activations zi and

yj into bounded monotone nondecreasing signals Si(zi) and Sj(yj). mj and 5j(yj) denote

the time derivatives of rnj and Sj(yj), synaptic and signal velocities. Sj(yj) measures the

competitive status of the jth competing neuron in Fy. Usually Sj approximates a binary

threshold function. For example, S may equal a steep binary logistic sigmoid,

I
SAM = 1 + e , (20)

for some constant c > 0. The jth neuron wins the laterally inhibitive competition if S, = 1,

loses if Sj = 0.

For discrete implementation, we use the DCL algorithm as a stochastic difference equa-

tion [Kong, 19911:

mj(t + 1) = mi(t) + ct ASj(yj(t)) [ S(x(t)) - m,(t) I if the jth neuron wins, (21)

m,(t + 1) = mi(t) if the ith neuron loses. (22)

ASj(yj(t)) denotes the time change of the jth neuron's competition signal Sj(yj) in the

competitive field Fy:

ASj(yj(t)) = sgn[ Si(yi(t + 1)) - Si(yj(t)) ] (23)
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We define the signum operator sgn(x) as

I if z>0

sgn(x) = 0 if x =0 (24)

-1 if x < 0

{c} denotes a slowly decreasing sequence of learning coefficients, such as ct .1(1 -

t/2000) for 2000 training samples. Stochastic approximation [Huber, 1981] requires a de-

creasing gain sequence {cj} to suppress random disturbances and to guarantee convergence

to local minima of mean-squared performance measures. The learning coefficients should

decrease slowly,

00

Ct = 00 (25)
t=1

but not too slowly,

00

tc2< 0 (26)
t=1

Harmonic-series coefficients, c = 1/t, satisfy these constraints.

We approximate the competitive signal difference ASi as the activation difference Ayj:

Asj(yj(t)) = sgn[ y3(t + 1) - Vj(t)] (27)

= Ay3(t) . (28)

Input neurons in feedforward networks usually behave linearly: Si(x,) = zi, or S(x(t))

x(t). Then we update the winning synaptic vector mj(t) with

mj(t + 1) = mj(t) + Ca Ayj(t) [ x(t) - mj(t) J (29)

We update thc Fy neuronal activations yj with the additive model

p

y(t + 1) +Y() + Si(Xi(t)) rnij(t) + E Sk(yk(t)) Wk1  - (30)
i k
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n+ p

Input field Fx Competition field Fy

FIGURE 28 Topology of the laterally inhibitive DCL network.

For linear signal functions Si, the first sum in (30) reduces to an inner product of sample

and synaptic vectors:

n

Xi(t) mi,(t) = xT(t) m(t) (31)

Then positive learning tends to occur-Amj > 0-when x is dose to the jth synaptic

vector mj.

Since a binary threshold function approximates the output signal function Sk(yk), the

second sum in (30) sums over just the winning neurons: wj for all winning neurons yk
k

The p x p matrix W contains the Fy within-field synaptic connection strengths. Di-

agonal elements wii are positive, off-diagonal elements negative. Winning neurons excite

themselves and inhibit all other neurons. Figure 28 shows the connection topology of the

laterally inhibitive DCL network.
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Product-space clustering

We divided the space 0 < x < 100 into five nonuniform intervals [0,32.5], [32.5,47.5],

[47.5,52.5], [52.5,67.5], and [67.5, 100]. Each interval represented the five fuzzy-set values

LE, LC, CE, RC, and RI. This choice corresponded to the nonoverlapping intervals

of the fuzzy membership function graphs m(z) in Figure 3. Similarly, we divided the

space -90 < < 270 into seven nonuniform intervals [-90,0], [0,66.51, [66.5,86], [86,94],

[94,113.5], [113.5,182.5], and [182.5,270], which corresponded respectively to RB, RU,

RV, VE, LV, LU, and LB. We divided the space -30 < 0 < 30 into seven nonuniform

intervals [-30,-201, (-20,-7.5], [-7.5,-2.5], [-2.5,2.5], [2.5,7.5], [7.5,20], and [20,30],

which corresponded to NB, NM, NS, ZE, PS, PM, and PB.

DCL classified each input-output data vector into one of the FAM cells. We added a

FAM rule to the FAM bank if the DCL-trained synaptic vector fell in the FAM cell. In

case of ties we chose the FAM cell with the most densely clustered data.

For the BP-AFAM generated from the neural control surface in Figure 15, we divided

the rectangle [0, 100] x [-90,270] into 35 nonuniform squares with the same divisions

defined above. Then we added and averaged the control surface values in the square. We

added a FAM rule to the FAM bank if the averaged value corresponded to one of the seven

FAM cells.

For the truck-and-trailer case, we divided the space -90 < Oc 90 into three intervals

[-90, -12.5], [-12.5, 12.5], and [12.5,90], which corresponded to NE, ZR, and PO. There

were 735 FAM cells, and 735 possible FAM rules, of the form (z, St, Oc;3).

37



Differential Competitive Learning for Centroid Estimation and Phoneme
Recognition

SFONG-GON KONG ANI) BART KOSKO

NN/D-ccmbcr 1990 IEEE

Traditional vector quantization systems may attempt to
Abstract-We oniparctd a differential competitive learning (I)CL) minimize a mean-squared-error or entropic performance

system with two supervised c.mpeiti% learning (SCI.) systems for measure. Formal minimization assumes knowledge of the
centroid estimation aaud phonctme recognition. I)CI. provides a new sampled probability density function p(x) and perhaps
form of unsupervised adaptive vector quantizatiom. Standard stochas- additional knowledge of how some parameters function-
tic competitive learning systems learn only if neurons win a conipeti-

lion for activation induced by randomly sampled patterns. l)CL sys- ally depend on other parameters. p(x) describes the con-
tems learn only if the competing neurons change their competitive tinuous distribution of patterns in R'. In general, we do
signal. Signal-velocity information provides unsupervised local rein- not know this probabilistic information. Instead, we use
forcement during learning. The sign of the neuronal signal derivative learning algorithms to adaptively estimate p(x) from
rewards winners and punishes losers. Standard competitive learning sample realizations. This procedure often reduces to sto-
ignores instantaneous win-rate information. Synaptic fan-in vectors chastic approximation [III, 112].
adaptively quantize the randomly sampled pattern space into nearest-
neighbor decision classes. More generally, the synaptic vector distri- Adaptive vector quantization (AVQ) systems adap-
bution estimates the unknown sampled probability density function tively quantize pattern clusters in R". Stochastic compet-
p(x). Simulations showed that unsupervised I)CL-trained synaptic itive learning systems are neural AVQ systems. Neurons
vectors converged to class centroids at least as fast as, and wandered compete for the activation induced by randomly sampled
less about these centroids thanSCLtrained synaptic vectors. Simula-
tions on a small set of English phonemes favored DCL over SCL for patterns. The corresponding synaptic fan-in vectors adap-
classification accuracy. tively quantize the pattern space R". The p synaptic vec-

tors mi define the p columns of the synaptic connection
matrix M. M interconnects the n input or linear neurons

I. ADAPTIVE VECTOR QUANTIZATION FOR PHONEME in the input neuronal field F to the p competing nonlinear
RECOGNITION neurons in the output field Ft.

p HONEME recognition is a simple form of speech rec-
ognition. We can recognize a speech sample phoneme In the simplest case, the p synaptic vectors estimate

by phoneme. The phoneme recognition system learns only centroids or modes of the sampled probability density
a comparatively small set of minimal syllables or pho- function p (x). The estimates are nonparametric. The user
nemes. More advanced systems learn and recognize need not know or assume which probability density fune-
words, phrases, or sentences. There are orders of mag- tionp(x)generates the trainingsamples. theobserved real-
nitude more such speech units than phonemes. Words izations of the underlying stochastic pattern process.
and phrases can also undergo more complex forms of dis- Pattern learning is supervised if the system uses. pat-
tortion and time warping. tern-class information. Suppose the k decision classes

In principle, we can recognize phonemes and speech { D } partition the pattern space R":
with vector quantization methods. These methods search 4
for a small but representative set of prototypes, which we R"= U D and Di fDj = ifi #j. (I)
can then use to match sample patterns with nearest-neigh- j =

'

bor techniques. The system knows and uses the class membership of each
In neural network phoneme recognition, a sequence of pattern x. The system knows that x -D, and that x D

discrete phonemes from a continuous speech sample pro- for all j E i. Pattern learningz is unsupervised if the system
duces a series of neuronal responses. Kohonen's 141 su- does not know or use class membership information. Un-
pervised neural phoneme recognition system successfully supervised learning algorithms use unlabeled pattern sam-
classifies 21 Finnish phonemes. This stochastic competi- pies.
tive learning system behaves as an adaptive vector quan- Fornally supervised learning depends on class indica-
tization system. tor fictions ( I,,)-

I1 ifx l~ (2

n, (x) = X ifc ) (2)
Manuscript rceeived Februt ry 22. 1090; revaicd July 24, 194)0. This

paper was supported by the Air Force Office of Scicntfic Research under indicates whcther pattern x belongs to decision class
Grant AFOSR-98 0236 and by a grant from Nippon Tclephone and TIle- )n
graph. ),. Unsupcrvised learning alhoritlns blindly cluster sam-

The authors arc with the ILcparsmcnt of Ilcetccil -ni ineering, Signal pies. They do not depend on class indicator futnctions.
and lmagc l'rocessmng In .itutc. tuimvcr.0y ot soutahern california. Lo An- The random indicator lituct ions deline the clas. probalil

iels. CA 9(X)99 0272.
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lfp > k, the synaptic vectors should approximate the
P(D,) = p(x)dr (3) entire density function p(x). More synaptic vectors

should arrive at more probable regions. Where patterns x
ar: dense or sparse, synaptic vectors it should be dense

, I (x) p(x) dr (4) or sparse. The local count of synaptic vectors then gives
an accurate nonparametric estimate of the volume prob-

= E[io] . (5) ability P( V) for volume V C R" :

El x I denotes the mathematical expectation of scalar ran- p
dora variable x. The partition property and P(R") = I P(V) =J x (12)
imply PI(DI) +- - - + P(D j,) - 1.

Learning algorithms estimate the unknown prouability nu(3ber of tl E V
density function p(x). We need not learn if we know P (13)
p(x). Instead, we could compute the desired quantities In the extreme case that V R", this approximation gives
with optimization, numerical-analytical, or calculus-of- P( V) = p/p 1m . For small or improbable subsets V
variation techniques. For instance, we could directly P(V) = p/p 0.compute the centroids j of the pattern classes D9) The P(V) = Op= 0.

Differential competitive learning (DCL) provides a newcentroids minimize the total mean-squared-error of vector 171 unsupervised form of AVQ. DCL modifies stochastic
quantization 8, synaptic vectors with a competing neuron's change in

I'i 2 p output signal. The neuronal signal velocity locally rein-
= 1 , (x, -mO)-p(x)d. (6) forces the synaptic vector. The time derivative's sign

changes resemble the supervised sign changes in super-
For if we set the gradient vector V,,,& equal to the null vised competitive learning (SCL) algorithms. SCL sys-
vector and solve for the optimal dij, we get tems use more information than DCL systems, since sig-

0= V, (7) nal velocities do not depend on class-membership
information. In particular, the DCL algorithm in (40) be-

I' low does not use the class membership of the training
= (x - -nj) p(x) dx (8) sample x.

Both DCL-trained and SCL-trained synaptic vectors
I tend to rapidly converge to pattern-class c-ntroids 18]. Our

= xp(x) di - fi  p(x) dx. (9) simulated DCL synaptic vectors conv,!-ed faster to bi-
polar centroids-points in [ -1, 1 ) "-tan did SCL syn-

Then aptic vectors when, as in biological r..dral networks, a
sigmoidal signal function nonlinearly transduced neuronal

xp(x) dx activations to bounded signals. DCL systems exploit a
(0) _ _win-rate dependent sequence of learning coefficients: Theti, -, (10) faster the neuron wins or loses, the more the synaptic vec-

, p(x) dx tor resembles or disresembles the sampled pattern. SCL
systems ignore this instantaneous rate information.

= ij, (I) In practice, input neurons have linear signal functions:
as claimed (when posit ive-defi nite Hessian conditions S (xi) = xi . The user presents the random sample x to thehold). system as the output of the Fx neurons. In this case, our

simulated DCL and SCL synaptic vectors converged

Mean-squared-error optimal learning drives synaptic equally quickly. But the DCL-trained synaptic vectors
vectors to the unknown centroids x, of the locally sampled wandered less about class centroids than did SCL-trained
pattern classes. More generally 181, El =, hold. synaptic vectors.
asymptotically as the random synaptic vector nt, wanders
in a Brownian motion about the ccntroid .. We observed
this Brownian wandering in the simulations discussed be- Autoassociative AVQ neural networks arc two-layer
low (Fig. 6). feedforward networks trained with competitive learning.

If there arc exactly /P distinct pattern classes or clusters. The input neuronal field Fxv receives the sample data and
the p synaptic row vectors in,(t). - - - . ott,(l) should passes it forward through synaptic connection matrix
asymptotically approach the centroid of a distinct patlern M to the p competing neurons in field FY. (1-eteroassocia-
class. In iencral. we do not know the number k of pattern tive AVQ networks correspond to three-layer feedforward
classes. If there are fc\,.ci synaptic vectors than the nurm- networks.) Synchronous feedt'Orward flow obviatcs the
ber k of pattern classcs. if p < A. the synaptic vectors neural interpretation. AVQ neural systems are simply sig-
should approach ihe centroids oft he p niost massive, most nal processing algorithims.
probable p;ttern clusters.
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Swoclasuic approxiniat ion I I II requires a decreasing
Thc metaphor of competing neurons reduces to a near- ganseqc e I IIC r, )to suppress random disturbances ad

est-nicighhor classification. The system compares tlie ctir- to guarantee convergence to a local mlin imao en
rent vector randomn sample x(t) in Euclidean distance to squared performance measures. The learning cocfiiciet
(lhe 1) coluimns 01 the sYnaptiC Conlnectioni matrix Af. to (lie should decrease slowly. et
p synaptic vectors ri1( t). n. n( 0). It he jIb synaptic
vector it, (,) Is closest to x (t). then thc ith neuron "wins" C, CO (7
the competition for activatioliat time 1. (17

Many witliin-field feedback dynamical systems approx- but not too slowly,
imate this nearest-neiehbor. winner-take-all behavior.
Mathematically. the jthi competing neuron should behave
as a class indicator functionS, = 1, More generally, the C, < Co. (18)
jth F - neuron only estimiates 11),. Then misclassification1
can still occur: S, (xm,' + T~ + but I1, (x) = 0 for row iHarnnofiic-series, coefficients, c, =I /[,satisfy these con-
vectors x and trnj. where fj denotes the inhibitive within- straints. For fast robust [21 stochastic approximation, only
field feedback the jth neuron receives, die harmonic-series coefficients satisfy these constraints.

We modify the nearest or "winning" synaptic vector C. Supervised C'ompetitiv'e Learning I (SC'LJ)
mnj with a simple difference learning law. We add some
scaled form of x(t) - in,(t) to m.,(t) to form nij(t + e
I ). We can also update near-neighbors of the winning ()+ cjX(I) -
neuron. In practice, and in the simulations below, we if x(I) e D,modify only one synaptic vector at a time. We do not mj (t + I) = (19)
modify "losers'--:mi(t + I ) = mi (t). (t) - cx (1) - 111, (t)]

The stochastic unsupervised competitive learning if x(t) 0 D.(UCL) algorithm represents the simplest competitive I
learning algorithm. Pattern recognition theorists first m,(: + 1) = m.(t) if i * j. (20)
studied the UCL algorithm but called it adaptive K-means SCL I supervises or reinforces synaptic modification. mjclustering [10]. Kohonen extended the UCL algorithm to lanpoItvlifhestmcortycasfeshean

two upevisd vrsinsSCLI131 14 an SC2 15].dom sample x- mi learns negatively, or forgets selec-
The supervisor must know the class membership of each tiey fte ytmmslasfe h rno ape
sample pattern x. The SCL1 and S2_L2 algorithms lin- Thveny i~tnst v uf regionsof misclassifi-sterno ape
early "reward" correct classifications as in the UCL al- cTion ijnd. syp o12 fmodrvedoto ein the scl algof-
gorithm. They "punish" incorrect classificatitons with a rionm as a' specia case ofhist dptived Baye claier
sign change. We obtain all three algorithms from the fol- Weth csa reriae the of upsdatie qaion (19)asiir
lowing three-step algorithm if we replace the third stepWecnrwieteSLupaeqaio(1)s
with the appropriate stochastic difference equation. mj (t + I ) =mi () + C, r (X (1)) 1fx(t) - in (t)I (21)

A. Cmpeitiv A Q Alorihmsif we define the supervised reinforcementf fnction r1 as

1) Initialize synaptic vectors:mi (0) = x(i ), i = 1, r, 1D ID- 1D(22)
p- Sample-dependent initialization avoids many

pathologies that can distort nearest- neighbor learning. ri depends explicitly on class indicator functions. rj re-
2) For random sample x(t), find the closest or "win- wards correct pattern classifications with + I and pun-

ning" synaptic vector mn, (t) :ishes misclassi ficat ions with - I.- We implicitly assume
jim t) ( t)I =mm , (t - ~t) j, 14) thejth neuron accurately estimates the jth indicator func-

lI ion:S,(xff) IW
wher IIx I A + + x deine th sqare ~-Thle SCL2 algorithm slightly modifies thie SCLI algo-

cI idean vector lorin oi x rithm. The SCL2 algorithm better estimates the optimal
3) Udai theviningsynpticvecor tt, I) wth he ayes decision-theoretic boundary in sonmc cases. The

UCL.. SCL I or SCI.2 learning algorithiit. Bayes decision boundary minimizes the mlisclassification
error. It represents the crossing point of the unknown con-

11. Ull.'lperisd Compe'titive( Learing WUCIJ ditionai densities P (x I D,) and 1) (x I).
The nearest -neighbor decision boundary corres ponds to

tit, (0 t ) it, ( t) + c,jI x (t) - tit, (t)1 (15) the hyperplane that bisects the line that connects the two
class centroids. If the patternt distribut ion is asvmlnietric-

I, 0 0 n(t) if' i :t j *(10) if. for instance, local deaityI functions with1 different
wherc , (ciotceS aI ,lo\wkI decreasiu, wluticcR of variances generate diflereni decisioni classes--thcen 111c
Ieartiln2 coefhicietits. In our simtulation. , 0.1I( I SCI d'cisionl boundary iiay lot resemleI thc 11a1ves de-
WNW00)) for '00( t ran n sainiples. lie tIC I lrorlih~n, ciiot hotnduary- Nearest -nei!thbor classification tends to

(15) rcstak'\ tOw cla"sical adaptive K-meanms clristcrlrw aI performiibetter in (the equal var-Iiace Case than InI t(Il niI-
y~oritiwii equal vairianfce ease.
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D. Supervised Compe'tiive Learning 2 (SCL2) S, ( ',) measures the competitive status of the jth com-

peting neuron in Fy. Usually, Sj approximates a binary
1111(i + I) = m(t) - cIx(t) - ',)l , (23) threshold function. S may equal a steep binary logistic

,,,i + +) = , +Jx(t) - ,,,t)J , (24) sigmoid
it' x E )I instead of X e D,. and If fl (t) is the nearest Si (30 + (31)

synaptic vector and iI, (I) is the next-to-nearest synaptic i + e-">
vector : for some constant c > 0. Thejth neuron wins the laterally

(1) XW >- < it, (t) - x(t) inhibitive competition if S, = 1, loses if S = 0.
In (27), in, learns only if S ( y) changes. This contrasts

mi rain (t) - x(t)l, (25) with the classical competitive learning law

and if x(t) falls in a class-dependent "window." In all "Q = S, ()) ISi(xi) - rie, (32)

other cases, which modulates the difference S(x) - mj with the win-

+ I) 2) loss signal S, not its velocity j. In (32), mj learns only
if the competitive signal S exceeds zero-only if the jth

The window defines a hyperrectangle in R' centered at neuron "wins" the activation competition.
the midpoint of the hyperline that connects the centroids
of D, and D,. If x(t) does not fall in the hyperwindow, Real neurons transmit and receive pulse trains. Pulse-
we modify no synaptic vector. We defined the R" window coded signal functions S, reveal the connection between
between Dj and D, as the n-diwensional hyperrectangle competitive and differential competitive learning. A pulse-
([fiI - d, i I + d ] x - x [Ii - d, i + d ], where coded signal function uses an exponentially fading win-

t m + dow I I I of sampled binary pulses :i1 denotes the midpoint -mit = (-m1, " , Ihi,) =(in +

mr)/2, and d denotes the window half-width. We put d y"
=2.5. S,(t) = ,=y,(s)e's , (33)

[II. DIFFERENTIAL COMPETITIVEi LEARNING where yj (t) = I if a pulse occurs at t, and y) (t) = 0 if
The differential competitive learning (DCL) law 171 no pulse occurs at t. Then 191

combines competitive and differential Hebbian learning: S (t) = )Y (t) - S (t). (34)

th = &(y) [Si(xi) - mj , (27) So the DCL law (27) reduces to

or in vector notation, mhj = yjSi - nzj - SjI - nij (35)

hi = ij(yj) IS(x) - m 1 (28) When the second term in (35) is sufficiently small, DCL

where S(x) = (S(xi), - - • , S.(x,)) and mj = (mi, reduces to competitive learning. This occurs when a los-
•,,j). mi, denotes the synaptic weight between the ing neuron suddenly wins, for then y. = 1 and S 0. In

ith neuron in input neuronal field Fx and the jth neuron in the stochastic case, the randoin pulse function y, repre-
competitive field Fy. Nonnegative signal functions S and sents an arbitrary random point process, and converts (35)
S, transduce the real-valued activations xi and yj into the to a doubly stochastic model.
bounded monotone nondecreasing signals S, (xi) and Similarly. the classical differential Hebbian law 161
Sj (yj). fi, and y) denote the time derivatives of mi = -M,, +S, . si (36)
and S, (yj). synaptic and signal velocities.

The stochastic calculus version of the DCL law relates reduces to signal ftebbian learning on average (in the ab-
random processes - sence of pulses)

dn,, = ,iS, IS, - n,,jI + dB',. (29) ,n -,, + SS.) (37)

B,, denotes a Brownian-motion diffusion process centered -ni,, + SSj + Ix,Y) - x,S, - vYS 1 (38)
at the origin. We can rewrite (29) in "'noise" notation as

S-111, 4 S, j:(39)

tit = [Js, - Inj I 1,, (30)
The"nois"process i has zero anEij = ,and on average. The approximation holds exactly if and only

The fnoise" roceVs n, I = o < ean om= and if no x, or v, pulses are present. a frequent event. Diffcr-
has finite varianceV n~ = o, < .The random-sam- ential ltebbian learning synapses "'fill in" with Itebbian

piing AVQ framework implicitly assumes that all corn- learning when pulses are absent

petitive learning laws are stochastic dillcrentmil or differ- For discrete implenentat ioi, we usc the I)C l. algo-
ence equations. Such stocha.,tic synaptic vectors tn, tend rithi as a stochastic dill crence equation.
to converge to pattern-class centroi(l, and converge ex-
ponentially quickly 181.
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positive learning (rhY > 0) tends to occur when the sys-

A. Differential Competitive Le2arnig~ (DCL) tern classifies x to the nearest pattern class Dj.

I) Initialize: in, (0) = x(i f. ifwe represent the Fx signal function S, with the bipolar

2) Find winning mI (t): IIir (t ) - X(t) = ri, logistic function ,

11r, (t) - x(t)iI. 2
3) Update winning rn, (t): Si (x,) = - - (48)., t+ I) In, ,,( ) + C', (s, ( 0( ))[s(X(,)) -f,,,,(I)] I +  e -"

c > 0, then the DCL algorithm (40) abstracts the corre-

if the jth neuron wins sponding bipolar pattern from the real-valued input. The

tni (I + I) in,(t) if the ith neuron loses (41) unsupervised sign change A Si in the DCL law (40) resem-
bles the reward-punish sign ch?.nge in the SCLI and SCL2

AS, (yi (t)) denotes the time change of the jth neurons algorithms. This suggests that we can meaningfully com-

competition signal Si (y)d in the competition layer F" pare the algorithms' performance on the same training and

AS,(y(t)) = sgn [S1(.1(t + I)) - S())(t)). (42) test data.
If we choose Si (xi) as a linear function of the input, if

We define the signuin operator sgn (x) as Si (xi) = xi, then the discrete version of DCL resembles

the UCL, SCLI, and SCL2 algorithms. We used both iin-

I if x > 0 ear and nonlinear formulations to compare DCL to SCLI

s x 0 i =0 (43) and SCL2. The supervised SCLI and SCL2 algorithms

always outperformed the UCL algorithm. So we limited

If X < 0. our DCL comparisons to SCLI and SCL2 systems.

We update the F, neuronal activations y, with the additive For most simulations, we used linearly transformed data,

Si (xe) = xi. In these cases, we approximated the signal

model difference ASi as the activation difference Ayj 1nj

y,(I + () y 1(t) + Z Si(xj(t)) Inq(t) AS(Yi(t)) - Ay(t) (49)

, = sgn [ y1(I + I) - y,(). (50)

+ Z Sk (Y (t)) ,Vj.i (44) This approximation holds exactly over the linear part of a
k signal function's range. For then S = dS/dyj = c for

In our simulations, the first sum in (44) reduced to some constant c > 0. Then.
SXi (f) mij (1) (45) &, =1 s; (1

h e o si c (52)

when we did not transform the input patterns x with a The constant c does not affect the signum operator used

nonlinear signal function Si. Input or Fx neurons in feed- in Ay,

forward networks usually behave linearly: Si (xi) = x. Linear data often produce large activation sums Es'.inmi,

For linear inputs, we computed the second sum in (44) that saturate nonlinear signals 5, to extreme values. Then

for linear-signal functions S4. Since we allowed only one the signal difference AS, equals zeroand may not discrim-

winner per iteration, this sum reduced to a single term inate changes in the competitive status. The activation dif-

yAw4,, where k denotes the winning neuron. fcrencc A Y tenains sensitive to these changes.

The p x p matrix Wdefined the Fy within-field synaptic

connection strengths " M

I +2 - . (46)

- 1 ... "' 4-2 i V

Diagonal elements w,, equaled 2, oil-diagonal elements

equaled - I. Fig. I shows the connectiOn topology of the

laterally inhibitive I)CI. network.
-ach neurP in I' codes for a specilic pattern cla:ss. By

(44, and the "cosIt law',vt",

S s) -) i1n, cos (S(x)., ) (47) In,,, fl,, Fx  (:0.,,,i,.o0.fi,,, l',

I q: I l,,|. o l h ; ct ,| . h i'l .' 13 1 nc . k



IV. COMPAR~ISON OF: COMPETITIVE ANt) lDIFIIOEN I IAL -

ComvvII trivt LEARNING FOR~ CENTHom EsrtIMATION
3

We compared the DCL algorithm to the SCLI and
SCL2 algorithms for estimating centroids. All algorithms

adaptively moved the synaptic vectors #ito pattern-class I. ~ ,~5
cen troids. They differed in how quickly thc trained syn-
aptic vectors reached the centroids and how much thie syn- 0
aptic vectors wandered about the centroids. The DCL al- .
gorithm moved the synaptic vectors to centroids at least
as fast as, did the SCLI and SCL2 algorithm~s. Once the
synaptic vectors reached the pattern-class centroids. the .
DCL-trained synaptic vectors wandered less about the
centroids than the SCL-rained synaptic vectors. .~3 -2 .1 a C

The DCL algorithm converged to centroids faster than
the SCLI and SCL2 algorithms. Convergence rates were
the same for linear signal functions,S (xi) = xi. The pat- Fig. 3. Centroid convergence of SCLI synaptic vectors trained with the
tern space consisted of 2000 two-dimensional Gaussian- same patterns as in Fig. 2. Bipolar logistic signal functions nonlinearly

distributed pattern vectors with variance 121 and with transduce real input patterns to bipolar naticrns.

centroids or modes at (20, 20), (20, -20), ( -20, 20),
and ( -20, -20). Fig. 2 shows centroid convergence of
DCL synaptic vectors with inputs transformed with bi-
polar signal functions. Fig. 3 shows the slower conver-
gence of the SCL1 algorithm with the same transformed 0

Gaussian Data. * denotes DCL synaptic vectors. + de-j
notes SCLI synaptic vectors. Figs. 4 and 5 show centroid 20 .
convergence for the same Gaussian data when the systems
used linear signal functions.

DCL-trained synaptic vectors wandered with less mean-
squared error about centroids than did SCL-trained syn- 2

aptic vectors. Fig. 6 shows mean-squared wandering about . .- '.*.

the Gaussian pattern-class centroid (-20, 20). Fig. 6 .:..t -

represents several such experiments with different Gauss-
ian and non-Gaussian pattern distributions. Solid lines de- - 4 2 0 6
note the convergence of the DCL synaptic vector. Dashed 0 .0 - 0 2 40 0

lines denote convergence of the SCLI synaptic vector. Fig. 4. Convergence or DCL-trained synaptic vectors to Gaussian ppttern-
class centroids. Same pattern distribution as in Figs. 2 and 3- Input data
not transformed: S, (x,) x,.
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synaptic vectors. Dashed lines represent SCLI-trained synaptic vectors.

The two graphs plot separately the m, and m, components of the synaptic Fig. 7. AVQ misclassificat;on rates for two Gaussian clusters: (a) with

vector m = (M . in1 ). equal variance centered about the centroids ( -20. 0) and (20. 0): and

(b) with unequal variance. In (b). the pattcrn class centered about (20,

0) has twice the variance of the pattern class centered about ( -20, 0).

We calculated the mean-squared error (MSE) of centroid

wandering for the class centered at ( -20, 20) after 200 form algorithm gave 256 complex Fourier coefficients for

iterations. Other centroids produced comparable MSE of each of the 256 windowed sample segments. We divided

centroid wandering. In the first case, we used 540 Gauss- the 200 Hz-5 kHz frequency range into 16 regions. We

ian samples with variance 25. Then, for the DCL algo- divided the 200 Hz-3 kHz frequency range into 12 equal

rithm, the MSE of centroid wandering equaled 0.48. For regions and the 3-5 kco frequency range into four equal

the SCLI algorithm, it equaled 1.48. In the second case, regions. Six Fourier coefficients represented each region

we used 554 Gaussian samples with variance 121. Then, in the 200 Hz-3 kHz range. 13 Fourier coefficients rep-

for the DCL algorithm, the MSE of centroid wandering resented each region in the 3-5 kHz range. We calculated

equaled 4. For the SCLI algorithm, it equaled 7.11. average power spectra over each region to form a 16-di-

Next we compared the DCL system to the SCLI and mensional pattern vector. We produced 16-dimensional

SCL2 systems for pattern classification accuracy. We phoneme pattern vectors by repeatedly sliding the Ham-
trained each AVQ system with 500 Gaussian-distributed ming window by 100 samples.

samples for each pattern class, and for each variance level The sample space consisted of real and artificial pho-

centered about the same centroids ( -20, 0) and (20, 0). nemes. The artificial phonemes were Gaussian random

We set variance levels at 20 units. For each variance level, vectors With variation 9 centered at the real phoneme vec-

we tested each AVQ system with 1000 new Gaussian-dis- tors. We generated these noisy phoneme samples to pro-

tributed samples for each pattern class. Fig. 7(a) shows vide the AVQ systms with a statistically representative

the misclassification rates of the DCL, SCLI, and SCL2 set of training samples.

systems for two representative Gaussian classes with equal The simulation compared the DCL, SCLI, and SCL2

variances. Fig. 7(b) shows misclassification performance learning systems for classification of nine representative

for each AVQ system when we repeated the simulation in English phonemes: five vowels Ia. e, i, o, ul, two fri-

Fig. 7(a) for unequal variances. The pattern class witl catives If, sI, one nasal In, and one plosive soundIr I.

centroid (20, 0) had twi(- the variance of the pattern class Table I lists the misclassification rates. The AVQ systems

with centroid ( -20, 0). The three clustering algorithms tended to more accurately classify vowel and nasal sounds

behaved similarly for increasing variance values, than they classified fricative and plosive sounds.
We trained each competitive AVQ system with 1000

Gaussian-distributed random phoneme vectors clustered

V. PIIONI. Rl.('(;NIION SIPJU.ATIONS into nine pattern classes. Each pattern class was centered

We obtained specch training samples from samples of about the original spoken phoneme and radially distrib-

continuous male speech with different English pronunci- uted with variance o = 9. We tandomly selected training

ations. We used a tinie-dependtnt Fourier spectrum to ex- data according to a uniform probability distribution to

tract features from the speech waveforms. An anti-alias simulate nine equiprobable pattern classes. We tested each

low-pa,. titter prefiltcrcd the speech sinals. We then dig- AVQ system with 100 new Gaussian-distributed phoneme
ilnttd the , _n I to 8,twith a I0 (kl/ sa mpl rig rc - samples for eacIt phoneme type. -xccpt for the two pho-

qucncv. A IIlttlutng wtn dow divided the digitized speech neics // an( /t. te )CL system misclassified no more

sinal'into 256 sample setucntIs. lhe fast Fourier trans- frequently than the SCL systems.
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/0/ 5 3 16 New York: Springcr-Vcrlag. 198K.

141 -. "Thc neural phonclic lypewricr." IEFE- Cfonluf. Ma. pp.
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/W/ 28 43 53 151 T. Kohoncn. G. lama. and R. Chrislcy. "Sgatistical pattern rccog.
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N 1 2 6 Can,(. Neural Netnr.s (ICNN-&'.). 1988. vol. 1. pp. 61-68.

u161 I. Kosko. "'Diffcrcntial licbbian lcarning." in Proc. Amcr. Inx.
4 Phyvs. Conf.: Neural Neworks Conpau.. Apr. 1986. pp. 277-282.

/t/1 52 48 26 171 -. Unsuperviscd learning in noic.' IEEE Trans. Neural Net-
scorks. vol. I. no. I, pp. 44 57. Mar. 1990.

181 -. "Stochastic competitive learning." in Proc. Summer 1990 Int.
Joint Conf. Neural Networks (JCNN-90). June 1990. vol. I. pp. 215-

TABLE 1 226.

PERCENTAGE MISCLASSIFICATION RATES OF THE DCL. SCLI, AND SCL2 (91 -. Neural Networks and Fuzzy St'stems: A Dynamical Systems Ap-

SYSTEMS FOR TH4E NINE ENGLISH PHONEMES ta, e. i, a. u. f n. t/ proach to Machine Intelligence. Englewood Cliffs. NJ: Prentice-

Hall, 1990.

110) J. MacQueen, "Some methods for classification and analysis of mul-

tivariatc observations." in Proc. 5th Berieley Svrp. Math. Stat.

CONCLUSIONS Prob., 1967, pp. 281-297.
C11 H. Robbins and S. Monro. "A stochastic approximation method."

The DCL system performed well in centroid estimation Ann. Math. Stat.. vol. 22. pp. 400-407, 1951.

and phoneme recognition. DCL synaptic vectors con- [121 Y. Z. Tsypkin, Foundations of the Theory of Learning Systens. New

York: Academic. 1973.
verged faster to centroids than did SCLl Isynaptic vectors
when logistic bipolar signal functions transformed the in-
put sample. DCL synaptic vectors wandered less about
pattern-class centroids than SCL synaptic vectors.

Our phoneme-recognition simulations were prelimi-
nary, but agreed with our centroid-estimation simula-
tions. The phoneme-recognition simulations suggest that
unsupervised DCL systems will perform as well as super-
vised SCLI and SCL2 systems in many pattern environ-
ments, even though DCL systems use less pattern-class
information.

In general, we do not know in advance whether x e Di
for every training sample x. and for every pattern class
Di, for an arbitrary classification, filtering, or estimation
problem. We may not even know approximat^,umiber
or characteristics of the underlying decision classes. We
can still apply DCL techniques in these cases and expect
SCL-level performance. But we may never know how
SCL systems would perform on the same data.
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C H A P T E R 17

FUZZY ASSOCIATIVE MEMORIES

Fuzzy Systems as Between-Cube Mappings

In Chapter 16, we introduced continuous or fuzzy sets as points in the unit hypercube

I" = [0, l j]. Within the cube we were interested in the distance between points. This led

to measures of the size and fuzziness of a fuzzy set and, more fundamentally, to a measure

of how much one fuzzy set is a subset of another fuzzy sek. This within-cube theory directly

extends to the continuous case where the space X is a subset of Rn or, in general, where

X is a subset of products of real or complex spaces.

The next step is to consider mappings between fuzzy cubes. This level of abstraction

provides a surprising and fruitful alternative to the propositional and predicate-calculus

reasoning techniques used in artificial-intclligence (Al) expert systems. It allows us to

reason with sets instead of propositions.

The fuzzy set framework is numerical and multidimensional. The Al framework is

symbolic and one-dimensional, with usually only l)iva.lent expert "rules" or propositions

allowed. Both frameworks can encode structured knowledge in linguistic form. But the

fuzzy approach translates the structured knowledge into a flexible nlluiCrical framcwork

and processes it in a manuer that resembles neural network processing. The numerical

framework also allows fuzzy systems to bc adaptively inferred and modificd, perhaps with

netiral or sta!qtical techniques, directly from problerm domain samile data.



Between-cube theory is fuzzy systems theory. A fuzzy set is a point in a cube. A

fuzzy system is a mapping between cubes. A fuzzy systeri S malps fuzzy sets to fuzzy

sets. Thus a fuzzy system S is a transformation S :I" - I P. The n-dimensional

unit hypercube I" houses all the fuzzy subsets of the domain space, or input universe of

discourse, X = {.l,...,}x,. IP houses all the fuzzy subsets of the range space, or output

universe of discourse, Y - {yi,..-,y,}- X and Y can also be subsets of R'n and R P. Then

the fuzzy power sets F(2x) and F(2 Y) replace In and IP.

In general a fuzzy system S maps families of fuzzy sets to families of fuzzy sets, thus

S : 1 × ... x I n
, -- IN x ... x IP '. Here too we can extend the definition of a

fuzzy system to allow arbitrary products of arbitrary mathematical spaces to serve as the

domain or range spaces of the fuzzy sets.

(A technical comment is in order for sake of historical clarification. A tenet, perhaps

the defining tenet, of the classical theory [Dubois, 1980] of fuzzy sets as functions concerns

the fuzzy extension of any mathematical function. This tenet holds that any function

f : X --+ Y that maps points in X to points in Y can be extended to map the fuzzy

subsets of X to the fuzzy subsets of Y. The so-called extension principle is used to define

the set-function f : F(2x) - F(2y), where F(2x) is the fuzzy power set of X, the set

of all fuzzy subsets of X. The formal definition of the extension principle is complicated.

The key idea is a supremum of pairwise minima. Unfortunately, the extension principle

achieves generality at the price of triviality. One can sh, W jKosko, 1986a-87] that in general

the extension principle extends functions to fuzzy sets by stripping the fuzzy sets of their

fuzziness, mapping the fuzzy sets into bit vectors of nearly all Is. This shortcoming,

combined with the tendency of the extension-principle framework to push fuzzy theory

into largely inaccessible regions of abstract mathematics, led in part to the development

of the alternative sets-as-points geometric framework of fuzzy theory.)

We shall focus on fuzzy systems S : In -- P that map ball of fuzzy sets in I" to

balls of fuzzy sets in IP. These continuous fuzzy systems behave as associative memories.

They map close inputs to close outputs. We shall refer to them as fuzzy associative

memories, or [AMs.

The simplest. FAM encodes the FAM rule or association (Aj, I3,), which associates

9



the p-dimcnsional fuzzy set Bi with the n-diniensiona fuzzy set Ai. These minimal FAMs

essentially map one ball in I n to one ball in IP. They are comparable to simple neural

networks. But the minimal FAMs need not. be adaptively trained. As discussed below,

structured knowledge of the form "If traffic is heavy in this direction, then keep the stop

light green longer" can be directly encoded in a licbbian-style FAM matrix. In practice

we can eliminate even this matrix. In its place the user encodes the fuzzy-set association

(HEAVY, LONGER) as a single linguistic entry in a FAM bank matrix.

In general a PAM system F: I" - IP encodes and processes in parallel a FAM

bank of m FAM rules (A,, BI),.. (Am, B,.). Each input A to the FAM system activates

each stored FAM rule to different degree. The minirnal FAM that stores (Ai, Bi) maps

input A to B', a partially activated version of Bi. The more A resembles A, -he more B'

resembles Bi. The corresponding output fuzzy set B combines these partially activated

fuzzy sets B',..., B',. In the simplest case B is a weighted average of the partially activated

sets:

B3 = wB+ ... +m B',

where wi reflects the credibility, frequency, or strength of the fuzzy association (Ai, BJ). In

practice we usually "defuzzify" the output waveform B to a single numerical value yj in Y

by computing the fuzzy centroid of B with respect to the output universe of discourse Y.

More general still, a FAM system encodes a bank of compound FAM rules that associate

multiple output or consequent fuzzy sets B,. . ., Bs with multiple input or antecedent fuzzy

sets A...-, A7. We can treat compound FAM rules as compound linguistic conditionals.

Structured knowledge can then be naturally, and in many cases easily, obtained. We

combine antecedent and consequent sets with logical conjunction, disjunction, or negation.

For instance, we would interpret the compound association (A', A2 ; B) linguistically as

the compound conditional "IF X' is A' AND A'2 is A2 , THEN Y is B" if the comma in

the fuzzy association (A', / 2; B) stood for conjunction instead of, say, disjunction.

We specify in advance the numerical universes of discourse X", X 2 , and Y. For each

universe of discourse X, we specify an appropriate library of fuzzy set values, A ,..., A'.

Contiguous fuzzy sets in a library overlap. In principle a neural network can estimate these3[



libraries of fuzzy sets. In practice this is usually unnecessary. The library sets represent

a weighted, though overlapping, quantization of the input space X. A different library of

fuzzy sets similarly quantizes the output space Y. Once the library of fuzzy sets is defined,

we construct the FAM by choosing appropriate combinations of input and output fuzzy

sets. We can use adaptive techniques to make, assist, or modify these choices.

An adaptive FAM (AFAM) is a time-varying FAM system. System parameters grad-

ually change as the FAM system samples and processes data. Below we discuss how neural

netwvik algorithms can adaptively infer FAM rules from training data. In principle learn-

ing can modify other FAM system components, such as the libraries of flzzy sets or the

FAM-rule weights wi.

Below we propose and illustrate an unsupervised adaptive clustering schemebased on

competitive learning, for "blindly" generating and refining the bank of FAM rules. In some

cases we can use supervised learning techniques, though we need additional information

to accurately generate error estimates.

FUZZY AND NEURAL FUNCTION ESTIMATORS

Neural and fuzzy systems estimate sampled functions and behave as associative mem-

ories. They share a key advantage over traditional statistical-estimation and adaptive-

control approaches to function estimation. They are model-free estimators. Neural and

fuzzy systems estimate a function without requiring a mathematical description of how the

output functionally depends on the input. They "learn from example." More precisely,

they learn from samples.

Both approaches are numerical, can be partially described with theorems, and admit an

algorithmic characterization that favors silicon and optical implementation. These prop-

erties distinguish neural and fuzzy approaches from the symbolic processing approaches of

artificial intelligence.

Neural and fuzzy systems differ in how they estimate sampled functions. They differ

in the kind of samples used, how they represent and store those samples, and how they

• • I i ' , I II i I l 11



associatively "inference" or map inputs to outputs.

These differences appear during system construction. The neural approach requires

tie specification of a nonlinear dynamical system, usually feedforward, the acquisition of

a sufficiently representative set of numerical training samples, and the encoding of those

training samples iin the dynamical system by repeated learning cycles. The fuzzy system

requires only that a linguistic "rule matrix" be partially filled in. This task is markedly

simpler than designing and training a neural network. Once we construct the systems, we

can present the same numerical inputs to either system. The outputs will be in the same

numerical space of alternatives. So both systems correspond to a surface or manifold in

the input-output product space X x Y. We present examples of these surfaces in Chapters

IS and 19.

Which system, neural or fuzzy, is more appropriate for a particular problem depends on

the nature of the problem and the availability of numerical and structured data. To date

fuzzy techniques have been most successfully applied to control problems. These problems

often permit comparison with standard control-theoretic and expert-system approaches.

Neural networks so far seem best applied to ill-defined two-class pattern recognition prob-

lems (defective or nondefective, bomb or not, etc.). The application of both approaches to

new problem areas is just beginning, amid varying amounts of enthusiasm and scepticism.

Fuzzy systems estimate functions with fuzzy set samples (Ai, Bi). Neural systems use

numerical point samples (xi, yi). Both kinds of samples are from the input-output product

space X x Y. Figure 17.1 illustrates the geometry of fuzzy-set and numerical-point samples

taken from the function f: X --* Y.

The fuzzy-set association (Ai, Bi) is sometimes called a "rule." This is misleading

since reasoning with sets is not the same as reasoning with propositions. Reasoning with

sets is harder. Sets are multidimensional, and associations are housed in matrices, not

conditionals. We must take care how we (lefine each term and operation. We shall refer to

the antecedent term Ai in the fuzzy association (Ai, Bi) as the input associant and the

5



consequent term Bi as the output associant.

~f

FIGURE 17.1 Function f maps domain X to range Y. In the first illustra-

tion we use several numerical point samples (x1 , yi) to estimate f: X -* Y.

In the second case we use only a few fuzzy' subsets A, of X and Bi of Y. The

fuzzy association (A8, B8 ) represents system structure, as an adaptive cluster-

ing algorithm might infer or as an expert might articulate. In practice there are

()



usually fewer different output associants or "rule" consequents I3i than input

associants or antecedents A,.

The fuzzy-set sample (Ai, B,) encodes structure. It represents a mapping itself, a min-

imal fuzzy association of part of the output space with part of the input space. In practice

this resembles a meta-rule-IF Ai, THEN Bi-the type of structured linguistic rule an ex-

pert might articulate to build an expert-system "knowledge base". The association might

also be the result of an adaptive clustering algorithm.

Consider a fuzzy association that might I)e used in the intelligent control of a traffic

light: "If the traffic is heavy in this direction, then keel) the light green longer." The

fuzzy association is (HEAVY, LONGER). Another fuzzy association might be (LIGHT,

SHORTER). The fuzzy system encodes each linguistic association or "rule" in a numerical

fuzzy associative memory (FAM) mapping. The FAM then numerically processes numerical

input data. A measured description of traffic density (e.g., 150 cars per unit road surface

area) then corresponds to a unique numerical output (e.g., 3 seconds), the "recalled"

output.

The degree to which a particular measurement of traffic density is heavy depends on

how we define the fuzzy set of heavy traffic. The definition may be obtained from statistical

or neural clustering of historical data or from pooling the responses of experts. In practice

the fuzzy engineer and the problem domain expert agree on one of many possible libraries

of fuzzy set definitions for the variables in question.

The degree to which the traffic light is kept green longer del)ends on the degree to

which the measurement is heavy. In the simplest case the two degrees are the same. lIn

general they differ. In actual fuzzy systems the output control variables-in this case the

single variable green light duiration-depend on many FAM rule antecedents or a-ssociants

that are activated to different degrees by incoming data.



Neural vs. Fuzzy Representation of Structured Knowledge

'The functional distinction between how fuzzy and neural systems differ begins with

how they represent structured knowledge. How would a neural network encode the same

associative information? How would a neural network encode the structured knowledge

"If the traflic is heavy in this direction, then keep the light green longer"?

The simplest method is to encode two associated numerical vectors. One vector rep-

resents the input associant HEAVY. The other vector represents the output associant

LONGER. But this is too simple. For the neural network's fault tolerance now works

to its disadvantage. The network tends to reconstruct partial inputs to complete sample

inputs. It erases the desired partial degrees of activation. If an input is close to Aj, the

output will tend to be Bi. If the output is distant from A1 , the output will tend to be some

other sampled output vector or a spurious output altogether.

A better neural approach is to encode a mapping from the heavy-traffic subspace to

the longer-time subspace. Then the neural network needs a representative sample set to

capture this structure. Statistical networks, such as adaptive vector quantizers, may need

thousands of statistically representative samples. Feedforward multi-layer neural networks

trained with the backpropagation algorithm may need hundreds of representative numerical

input-output pairs and may need to recycle these samples tens of thousands of times in

the learning process.

The neural approach suffers a deeper problem than just the computational burden of

training. What does it encode? How do we know the network encodes the original struc-

ture? What does it recall? There is no natural inferential audit trail. System nonlinearities

wash it away. Unlike an expert system, we do not know which inferential )aths the network

uses to reach a given output or even which inferential paths exist. There is only a system of

synchronous or asynchronous nonlinear functions. Unlike, say, the adaptive Kalman lilter,

we cannot appeal to a postulated mathematical model of how the outl)ut state depends on

the input state. Model-free estimation is, after all, the central computational advantage

of neural networks. The cost is system inscrutability.
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We arc left with an unstructured computational black box. We do not know what the

neural network encoded during training or what it will encode or forget in further training.

(For competitive adaptive vector quant zers we do know that samlple-space centroids are

asymptotically estimate(..) We can characterize the neural network's behavior only by

exhaustively passing all inputs through the black box and recording the recalled outputs.

The characterization may be in terms of a summary scalar like mean-squared error.

This black-box characterization of the network's behavior involves a computational

dilemma. On the one hand, for most problems the number of input-output cases we need

to check is computationally prohibitive. On the other, when the number of input-output

cases is tractable, we may as well store these pairs and appeal to them directly, and without

error, as a look-up table. In ,he first case the neural network is unreliable. In the second

case it is unnecessary.

A further problem is sample generation. Where did the original numerical point samples

come from? Was an expert asked to give numbers? How reliable are such numerical vectors,

especially wheii the (.pert feels most comfortable giving the original linguistic data? This

procedure seems at most as reliable as the expert-system method of asking an expert to

give condition-action rules with numerical uncertainty weights.

Statistical neural estimators require a "statistically representative" sample set. We may

need to randomly "create" these samples from an initial small sample set by bootstrap tech-

niques or by random-number generation of points clustered near the original samples. Both

sample-augmentation procedures assume that the initial sample set sufficiently represents

the underlying probability distribution. The problem of where the original sample set

comes from remains. The fuzziness of the notion "statistically representative" compounds

the problem. In general we do not know in advance how well a given sample set reflects an

unknown underlying distribution of points. Indeed when the network is adapting on-line,

we know only past samples. The remainder of the sample set is in the unsampled future.

In contrast, fuzzy systems directly encode the linguistic sample (HEAVY, LONGER) in

a dedicated numerical matrix. The default encoding technique is the fuzzy ltebb procedure

discussed below. For practical problems, as mentioned above, the numerical matrix need

not be stored. Indeed it. need not even be formed. Certain numerical inputs permit this



simplification, as we shall see below. In general we describe inputs by an uncertainty

distribution, probabilistic or fuzzy. Then we must use the entire inatrix.
For instance, if a heavy tra .ic input is simply the number 150, we can omit the FAM

matrix. But if the input is a Gaussian curve with mean 150, then in principle we must

process the vector input with a FAM matrix. (In practice we might use only the mean.)

This difference is explained below. The dimensions of the linguistic PAM bank inatrix

are usually small. The dimensions reflect the quantization levels of the input and output

spaces.

The fuzzy approach combines the purely numerical approaches of neural networks and

mathematical modeling with the symbolic, stru',,re-rich approaches of artificial intelli-

gence. We acquire knowledge symbolically-or numerically if we use adaptive techniques

-but represent it numerically. We also process data numerically. Adaptive FAM rules

correspond to common-sense, often non-articulated, behavioral rules that improve with

experience.

We can acquire structured expertise in the fuzzy terminology of the knowledge source,

the "expert." This requires little or no force-fitting. Such is the expressive power of

fuzziness. Yet in the numerical domain we can prove theorems and design hardware.

This approach does not abandon neural network techniques. Instead, it limits them to

unstructured parameter and state estimation, pattern recognition, and cluster formation.

The system architecture remains fuzzy, though perhaps adaptively so. In the same spirit,

no one believes that the brain is a single unstructured neural network.

FAMS as Mappings

Fuzzy associative memories (FAMs) are transformialins. F/A'Is Tnap fuzzy scts

to fuzzy sets. They [nap linit cIIIues to 11nit cubes. This is evident iII Figure 17.1. Ii

the simplest case 1 Ie FAM consists of a single association, such as (IIE AVY, LONGER).

In general the FAM consists of a bank of different AM associations. lPach association

is represented by a different numerical PAM tuatrix, or a different entry in a NAM-bank
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matrix. These matrices are not combined as with neural ne'work associative tiemory

(outer-product) matrices. (Ali exception is the fuzzy cognitive map [Kosko, 1988; 'Taber,

1987, 1990].) The matrices are stored separately I)ut. accessed iMi parallel.

We begin with single-association FAMs. For concreteness let tile fuzzy-set pair (A, B)

encode the traffic-control association (IHEAVY, LIGHT). We quantize the donain of traffic

density to the n nuimerical variables x 1 , x 2, ... , r.n. We quantize the range of green-light

duration to the p variables yl, Y2, ... , yp. The elements xj and yj belong respectively to

the ground sets X = {xi, ... , Xn} and Y = {yi, ... , x,} x1 might represent zero

traffic density. yp might represent 10 seconds.

The fuzzy sets A and B are fuzzy subsets of X and Y. So A is point in the n-

dimensional unit hypercube P = [0, 1]'n, and B is a point in the p-dimensional fuzzy

cube IP. Equivalently, we can think of A and B as membership functions mA and nZJ

mapping the elements xi of X and yj of Y to degrees of membership in [0, 1]. The

membership values, or fit (fuzzy unit) values, indicate how much xi belongs to or fits in

subset A, and how much y, belongs to B. We describe this with the abstract functions

MA : X - [0, 11 and mB : Y - [0, 1]. We shall freely view sets both as functions

and as points.

The geometric sets-as-points interpretation of fuzzy sets A and B as points in unit

cubes allows a natural vector representation. We represent A and B by the numerical fit

vectors A = (a,, ... , an) and B = (bl , ... , bp), where ai = ?71A(Xi) and b= m=B(yj).

We can interpret the identifications A = HEAVY and B = LONGER to suit the problem

at hand. Intuitively the ai values should increase as tile index i increases, perhaps ap-

proximating a sigmoid membership function. Figure 17.2 illustrates three possible fuzzy

subsets of the universe of discourse X.
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FIGURE 17.2 Three possible fuzzy subsets of traffic density space X. Each

fuzzy sample corresponds to such a subset. We draw the fuzzy sets as contin-

uous membership functions. In practice membership values are quantized. So

the sets are points in the unit hypercube In". Each fuzzy sample corresponds

to such a subset.

Fuzzy Vector-Matrix Multiplication: Max-Min Composition

Fuzzy vector-matrix multi)lication is similar to classical vector-matrix multiplication.

We replace pairwise multiplications with pairwise minima. We re)lace colunn (row) sums

with column (row) maxima. We denote this fuzzy vector-matrix composition relation,

or the max-mim composition relation [Klir, 1988], by the composition operator "o". For

row fit vectors A and 13 and fuzzy n-by-p matrix A4 (a point in lX):

A oA B , (1)
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where we compute the "recalled" component bj by taking the fuzzy inner product of fit

vector A with the jth column of M:

bj = max min(ai, mi ) (2)
l<i<yt

Suppose we compose the fit vector A = (.3 .4 .8 1) with the fuzzy matrix M given by

.2 .8 .7

.7 .6 .6
M =

.8 .1 .5

0 .2 .3

Then we compute the "recalled" fit vector B = A o M component-wise as

b, = max{min(.3, .2), min(.4, .7), min(.8, .8), min(1, 0)1

= max(.2, .4, .8, 0)

b2 = max(.3, .4, .1, .2)

b3 - max(.3, .4, .5, .3)

.5.

So B = (.8 .4 .5). If we somehow encoded (A, B) in the FAM matrix M, we would say

that the FAM system exhibits pcrfect recall in the forward direction.

The neural interpretation of max-min composition is that each ncuron in field Fy

(or field F8 ) generates its signal/activation value by fuzzy linear composition. Passing
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inforination back through MT allows us to interpret the fuzzy system as a bidirectional as-

, ,ciative memory (BAM). The Bidirectional FAM Theorems below characterize successful

l1AM recall for fuzzy correlation or lilebbian learning.

For completeness we also mention the max-product composition operator, which

replaces mininmum with product in (2):

bi = max ai mijl<i<n

In the fuzzy literature this composition operator is often confused with the fuzzy correlation

encoding scheme discussed below. Max-product composition is a method for "multiply-

ing" fuzzy matrices or vectors. Fuzzy correlation, which also uses pairwise products of

fit values, is a method for constructing fuzzy matrices. In practice, and in the following

discussion, we use only max-min composition.

FUZZY HEBB FAMs

Most fuzzy systems found in applications are fuzzy Hebb FAMs [Kosko, 1986b]. They

are fuzzy systems S : " -+ IP constructed in a simple neural-like manner. As discussed

in Chapter 4, in neural network theory we interpret the classical Hebbian hypothesis of

correlation synaptic learning [Hebb, 19491 as unsupervised learning with the signal product

Si Sj:

Mij = -lij + Si(xi) S2(yj) (3)

For a given pair of bipolar vectors (X, Y'), the neural interpretation gives the outer-product

correlation matrix

Al = T y (4)

The fuzzy Hebb matrix is similarly defined pointwise by the minimum of the "sig-

nals" ai and bj, an encoding scheme we shall call correlation-minimum encoding:
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,ij = min(ai, b3) , (5)

given in matrix notation as the fuzzy outer-product

M1 = A T  o B (6)

Mamdani [1977] and Togai [1986] independently arrived at the fuzzy Ilebbian prescrip-

tion (5) as a multi-valued logical-implication operator: truth(ai -- bi) = min(ai, bj).

The min operator, though, is a symmetric truth operator. So it does not properly gen-

eralize the classical implication P -+ Q, which is false if and only if the antecedent P

is true and the consequent Q is false, t(P) = 1 and t(Q) = 0. In contrast, a like desire

to define a "conditional possibility" matrix pointwise with continuous implicat ion values

led Zadeh [19831 to choose the Lukasiewicz implication operator: inj = truth(a, -+

b1) = min(1, 1 - ai + bj). The problem with the Lukasiewicz operator is that it usually

unity. For min(l, 1 - ai + b3) < 1 iff ai > bi. Most entries of the resulting matrix M

are unity or near unity. This ignores the information in the association (A, B). So A' o M

tends to equal the largest fit value a' for any system input A'.

We construct an autoassociative fuzzy Hebb FAM matrix by encoding the redundant

pair (A, A) in (6), as the fuzzy auto-correlation matrix:

M = AT o A . (7)

In the previous example the matrix M was such that the input A = (.3 .4 .8 1)

recalled fit vector B = (.8 .4 .5) upon max-min composition: A o M = B. Will

B still be recalled if we replace the original matrix M with the fuzzy IHebb matrix found

with (6)? Substituting A and B in (6) gives

.3 .3 .3 .3

Ml =: A T o B = o (.8 .4 .5) .

.8 .8 .4 .5

1 8 .4 .5
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This fuzzy Hebb matrix A" illustratcs two key properties. First, the ith row of M is

the pairwise minimum of ai and the output associant B. Symmetrically, the jth column

of M is the pairwise mininmu of b1 and the input associant A:

[a, A B]
m =: (8)

a, A Bj

= [b, A AT I ... ibm A AT] (9)

where the cap operator denotes pairwise minimum: ai A bj min(a,,bJ). The term

ai A B indicates conponent-wise minimum:

a1 A B = (a i A bl,...,ai A b,) (10)

Hence if some ak = 1, then the kth row of M is B. If some 6 = 1, the Ith column of

M is A. More generally, if some ak is at least as large as every bj, then the kth row of the

fuzzy Hebb matrix M is B.
olf

Second, the third and fourth eoitiiias of M are just the fit vector B. Yet no column

is A. This allows perfect recall in the forward direction, A o M = B, but not in the

backward direction, B o MT 0 A:

A o M = (.8 .4 .5) = B

B o MT (.3 .4 .8 .8) A' C A

A' is a proper subset of A : A' / A and S(A', A) 1, where S measures the degree of

subsethood of A' in A, as discussed in Chapter 16. In other words, a' < a, for each i and

a. < ak for at least one k. The Bidirectional FAM Theorems below show that this is a

general property: If B' = A o A! differs from B, then B' is a proper subset of B. Hence

fuzzy subsets truly map to fuzzy subsets.
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The Bidirectional FAM Theorem for Correlation-Minimum En-

coding

Analysis of FAM recall uses the traditional [Klir, 1988] fuzzy set notions of the height

and the normality of fuzzy sets. The height H(A) of fuzzy set A is the maxinmm fit value

of A:

H(A) = max a,1<i<n

A fuzzy set is normal if H(A) = 1, if at least one fit value ak is maximal: ak 1. In

practice fuzzy sets are usually normal. We can extend a nonnormal fuzzy set to a normal

fuzzy set by adding a dummy dimension with corresponding fit value a,,+ = * 1.

Recall accuracy in fuzzy Hebb FAMs constructed with correlation-minimum encoding

depends on the heights H(A) and H(B). Normal fuzzy sets exhibit perfect recall. Indeed

(A, B) is a bidirectional fixed point-A o Ml = B and B o MT = A-if and only if

H(A) = H(B), which always holds if A and B are normal. This is the content of the

Bidirectional FAM Theorem [Kosko, 1986a] for correlation-minimum encoding. Below we

present a similar theorem for correlation-product encoding.

Correlation-Minimum Bidirectional FAM Theorem. If M = AT o B, then

(i) A o M = B iff H(A) > H(B)

(ii) B o MT = A iff H(B) > H(A)

(iii) A' o Al C B for any A'

(iv) B' o MT C A for any B'

Proof. Observe that the height H(A) is the fuzzy norm of A:

17



A o AT = max ai A ai = max ai = 11(A)

Then

4 o M = A o (AT o B)

= (A o AT) o B

H(A) o B

= 11(A) A B

So H(A) A B = B iff H(A) >_ H(B), establishing (i). Now suppose A' is an arbitrary

fit vector in In. Then

A' o Al = (A' o AT) o B

= (A' o AT) A B

which establishes (iii). A similar argument using MT = BT o A establishes (ii) and (iv).

Q.E.D.

The equality A o AT = H(A) implies an immediate corollary of the Bidirectional

FAM Theorem. Supersets A' D A behave the same as the encoded input associant

A: A' o M = B if A o Al = B. Fuzzy Hebb FAMs ignore the information in the

difference A' - A, when A' C A'.

Correlation-Product Encoding

An alternative fuzzy Hebbian encoding scheme is correlation-product encoding.

The standard mathematical outer product of the fit vectors A and B forms the FAM

matrix M. This is given pointwise as
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M -- ai ,(1)

and in matrix notation as

A = AT B (12)

So the ith row of M is just the fit-scaled fuzzy set ai B, and the jth column of M is b, AT:

M -(13)

A [ Ibm AT ] , (14)

If A = (.3 .4 .8 1) and B = (.8 .4 .5) as above, we encode the FAM rule (A, B) with

correlation-product in the following matrix M:

.24 .12 .15

.32 .16 .2
M =

.64 .32 .4

.8 .4 .5

Note that if A' = (0 0 0 1), then A' o M = B. The output associant B is recalled

to maximal degree. If A' = (1 0 0 0), then A' o M = (.24 .12 .15). The output B is

recalled only to degree .3.

Correlation-minimum encoding produces a matrix of clipped B sets. Correlation-

product encoding produces a matrix of scaled B sets. In membership function plots,

the scaled fuzzy sets ai B all have the same shape as B. The clipped fuzzy sets ai A B

are largely flat. In this sense correlation-product encoding preserves more information

than correlation-minnum encoding, an important point in fuzzy applications when out-

put fuzzy sets are added together as in equation (17) below. In the fuzzy-applications

literature this often leads to the selection of correlation-product encoding.
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Unfortunately, in the fuzzy-applications literature the correlation-product encoding

scheme is invariably confused with tile max-product composition method of recall or infer-

ence, as mentioned above. This confusion is so widespread it warrants formal clarification.

In practice, and in the fuzzy control applications developed in Chapters 18 and 19, the

input fuzzy set A' is a binary vector with one 1 and all other elements 0-a row of the

n-by-n identity matrix. A' represents the occurrence of the crisp measurement datum xi,

such as a traffic density value of 30. When applied to the encoded FAM rule (A, B), the

measurement value xi activates A to degree a,. This is part of the max-min composition

recall process, for A' o M = (A' o AT) o B = ai A B or ai B depending on whether

correlation-minimum or correlation-product encoding is used. We activate or "fire" the

output associant B of the "rule" to degree ai.

Since the values ai are binary, ai mij = a, A nij. So the max-min and max-

product composition operators coincide. We avoid this confusion by referring to both

the recall process and the correlation encoding scheme as correlation-minimum infer-

ence when correlation-minimum encoding is combined with max-min composition, and

as correlation-product inference when correlation-product encoding is combined with

max-min composition.

We now prove the correlation-product version of the Bidirectional FAM Theorem.

Correlation-Product Bidirectional FAM Theorem. If M -- AT B and A and B

are non-null fit vectors, then

(i) A o M = B iff II(A) = 1

(ii) B o MT = A iff 11(B) = 1

(iii) A' o A4 C B for any A'

(iv) B' o MT C A for any B'
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Proof.

A o A = A o (AT B)

= (A o AT) B

H 11(A) B

Since B is not the empty set, 1H(A) B = B iff H(A) 1, establishing (i). ( A o M B

holds trivially if B is the empty set.) For an arbitrary fit vector A' in I':

A' o Al = (A' o AT) B

C H(A) B

c B ,

since A' o A < H(A), establishing (iii). (ii) and (iv) are proved similarly using

MT = BT A. Q.E.D.

Superimposing FAM Rules

Now suppose we have rn FAM rulcs or associations (A,, BI),..., (Am, Bin). The fuzzy

Hebb encoding scheme (6) leads to m FAM matrices Ml,.. ., Mm to encode the associa-

tions. The natural neural-network temptation is to add, or in this case maximum, the in

matrices pointwise to distributively encode the associations in a single matrix Al:

A4 max Alk (15)
I <k<yn

This superimposition scheme fails for fuzzy ltebbian encoding. The superimposed result

tends to be the matrix ATo B, where A and B are the pointwise maximum of the rcspective

m fit vectors Ak and Bk. We can see this from the pointwise inequality
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max min(a*,b*) < min( max max bI 5k<m -j - I <k<m g I _k<m

Inequality (16) tends to hold with equality as ?n increases since all maximum terms ap-

proach unity. We lose the information in the m associations (Ak, B.).

The fuzzy approach to the superimposition problem is to additively superimpose the rn

recalled vectors B' instead of the fuzzy Hebb matrices Mk. Bk and Mk are given by

A o Mk = A o (A T o Bk)

for any fit-vector input A applied in parallel to the bank of FAM rules (Ak, Bk). This

requires separately storing the m associations (At, Bk), as if each association in the FAM

bank were a separate feedforward neural network.

Separate storage of FAM associations is costly but provides an "audit trail" of the

FAM inference procedure. The user can directly determine which FAM rules contributed

how much membership activation to a "concluded" output. Separate storage also pro-

vides knowledge-base modularity. The user can add or delete FAM-structured knowledge

without disturbing stored knowledge. Both of these benefits are advantages over a pure

neural-network architecture for encoding the same associations (Ak, Bk). Of course we can

use neural networks exogenously to estimate, or even individually house, the associations

(Ak, B3k).

Separate storage of FAM rules brings out another distinction between FAM systems

and neural networks. A fit-vector input A activates all the FAM rules (Ak, Bk) in parallel

but to different degrees. If A only partially "satisfies" the antecedent associant Ak, the

consequent associant Bk is only partially activated. If A does not satisfy Ak at all, Bk does

not activate at all. B, is the null vector.

Neural networks behave differently. They try to reconstruct the entire association

(Ak, Bk) when stimulated with A. If A and Ak mismatch severely, a neural network will
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tend to emit a non-null output B , perhaps the result of the network dynamical system

falling into a "spurious" attractor in the state space. This may be desirable for metrical

classification prol)lems. It is undesirable for inferential problems and, arguably, for associa-

tive memory problems. When we ask an expert a question outside his field of knowledge,

in many cases it is more prudent for him to give no response than to give an educated,

though wild, guess.

Recalled Outputs and "Defuzzification"

The recalled fit-vector output B is a weighted sum of the individual recalled vectors

B : ZWk BL (17)
k=1

where the nonnegative weight wk summarizes the credibility or strength of the kth FAM

rule (Ak, Bk). The credibility weights wk are immediate candidates for adaptive modifica-

tion. In practice we choose w, = ... = wm = 1 as a default.

In principle, though not in practice, the recalled fit-vector output is a normalized sum

of the B. fit vectors. This keeps the components of B unit-interval valued. We do not

use normalization in practice because we in,, -riably "defuzzify" the output distribution B

to produce a single numerical output, a single value in the output universe of discourse

Y = {Y,.. -,yp}- The information in the output waveform B resides largely in the

relative values of the membership degrees.

The simplest (tefuzzification scheme is to choose that clement ym,. .' that has maximal

membership in the output fuzzy set B:

.(Yinax) -max B()()I<.i<k

Tie popular probabilistic methods of maximum-likelihood and maximum-a-posteriori pa-

rametr estimation motivate this maximum-membership defuzzification scheme. The
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maxinum-rnernbership scheme (18) is also computationally light.

There are two fundamental problems with the maxinmum-mmbership defuzzification

sclhmc. First, the mode of the .3 distribution is not unique. This is especially troublesome

with correlation-minmum encoding, as the representation (8) shows, and somewhat less

troublesome with correlation-product encoding. Since the minimum operator clips off the

top of the Bk fit vectors, the additively combined output fit vcctor B tends to be flat over

many regions of universe of discourse Y. For continuous membership functions this leads

to infinitely many modes. Even for quantized fuzzy sets, there may be many modes.

In practice we can average multiple modes. For large FAM banks of "independent"

FAM rules, some form of the Central Limit Theorem (whose proof ultimately depends

on Fourier transformability not probability) tends to apply. The waveform B tends to

resemble a Gaussian membership function. So a unique mode tends to emerge. It tends

to emerge with fewer samples if we use correlation-product encoding.

Second, the maximum-membership scheme ignores the information in much of the

waveform B. Again correlation-minimum encoding compounds the problem. In practice

B is often highly asymmetric, even if it is unimodal. Infinitely many output distributions

can share the same mode.

The natural alternative is the fuzzy centroid defuzzification scheme. We directly

compute the real-valued output as a normalized convex combination of fit values, the fuzzy

centroid B of fit-vector B with respect to output space Y:

P

: yj m.B(yj)
= P(19)

j=i

The fuzzy centroid is unique and uses all the information in the otitput distribution B. For

svmuetric liniiodal distributions the mode and fuzzy centroid coincide. In many cases
we nuist replace the (iscrete sums in (19) with integrals over continuously infinite spaces.

We show in Chapter 19, though, that for libraries of trapezoidal fuzzy sets we caii replace

such a ratio of integrals with a ratio of simple discrete sums.

Note that computing the centroid (19) is the only step in the FAM inference I)rocedure
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that requires division. All other operations are inner products, pairwise minima, and ad-

ditions. This promises realization in a fuzzy optical processor. Already some form of this

FAM-inference scheme has led to digital [Togai, 1986] a.n~d analog [Ya|i|akawa, 1987-88]

VLSI circuitry.

FAM System Architecture

Figure 17.3 schematizes the architecturc of the nonlinear FAM system F. Note that F

maps fuzzy sets to fuzzy sets: F(A) = B. So F is in fact a fuzzy-system transformatioll

F : P  - 1P. In practice A is a bit vector with one unity value, a, = 1, and all other

fit values zero, aj = 0.

The output fuzzy set B is usually defuzzified with the centroid technique to produce an

exact element yj in the output universe of discourse Y. In effect defuzzification produces

an output binary vector 0, again with one element 1 and the rest Os. At this level the FAM

system F maps sets to sets, reducing the fuzzy system F to a mapping between Boolean

cubes, F : {0, 1}' -4 {0, 1}P. In many applications we model X and Y as continuous

universes of discourse. So n and p are quite large. We shall call such systems binary

input-output FAMs.
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FAM SYSTEM

FIGURE 17.3 FAM system architecture. The FAM system F maps fuzzy

sets in the unit cube I to fuzzy sets in the unit cube I P. Binary input fuzzy

sets are often used in practice to model exact input data. In general only an

uncertainty estimate of the system state is available. So A is a proper fuzzy set.

The user can defuzzify output fuzzy set B to yield exact output data, reducing

the FAM system to a mapping between Boolean cubes.

Binary Input-Output FAMs: Inverted Pendulum Example

Binary input-output PAMs (BI3OFAMs) are the most popular fuzzy systems for appli-

cations. BIOFAMs map system state-variable data to control data.. In the case of traffic

control, a I3IOFAM maps traffic densities to green (and red) light durations.

BIOFAMs easily extend to multiple FAM rule antecedents, to mappings from product

cubes to product cubes. There has been little theoretical justification for this extension,

26



aside from Mamdani's [1977] original suggestion to multiply relational matrices. The ex-

tension to multi-antecedent FAM rules is easier applied than formally explained. In the

next section we present a general explanation for dealing with multi-antecedent FANI rules.

First, though, we present the BIOFAM algorithm by illustrating it, and tile FAM construc-

tion procedure, on an archetypical control problem.

Consider an inverted pendulum. In particular, consider how to adjust a motor to bal-

ance an inverted pendulum in two dimensions. The inverted pendulum is a classical control

problem. It admits a math-model control solution. This provides a formal benchmark for

BIOFAM pendulum controllers.

There are two state variables and one control variable. The first state variable is tile

angle 0 that the pendulum shaft makes with the vertical. Zero angle corresponds to the

vertical position. Positive angles are to the right of the vertical, negative angles to the left.

The second state variable is the angular velocity AO. In practice we approximate the

instantaneous angular velocity AO as the difference between the present angle measurement

Ot and the previous angle measurement Ot-1:

AOt =:O - Ot-t

The -..ontrol variable is the motor current or angular velocity vt. The velocity can also

be positive or negative. We expect that if the pendulum falls to the right, the motor

velocity should be negative to compensate. If the pendulum falls to the left, the motor

velocity should be positive. If the pendulum successfully balances at the vertical, the motor

velocity should be zero.

The real line R is the universe of discourse of the three variables. In practice we

restrict each universe of discourse to a comparatively small interval, such as [-90, 90] for

tie pendulum angle, centered about zero.

We can quantize each universe of discourse into five overlapping fuzzy sets. We know

that the system variables can be positive, zero, or negative. We can quantize the magni-

tudes of the system variables finely or coarsely. Suppose we quantize the magnitudes as

small, medium, and large. This leads to seven linguistic fuzzy set values:
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NL: Negative Large

NM: Negative Medium

NS: Negative Small

ZE: Zero

PS: Positive Small

PM: Positive Medium

PL: Positive Large

For example, 0 is a. fuzzy variable that takes NL as a fuzzy set value. Different fuzzy

quantizations of the angle universe of discourse allow the fuzzy variable 0 to assume differ-

ent fuzzy set values. The expressive power of the FAM approach stems from these fuzzy-set

quantizations. In one stroke we reduce system dimensions, and we describe a nonlinear

numerical process with linguistic common-sense terms.

We are not concerned with the exact shape of the fuzzy sets defined on each of the

three universes of discourse. In practice the quantizing fuzzy sets are usually symmetric

triangles or trapezoids centered about representive values. (We can think of such sets as

fuzzy numbers.) The set ZE may be a Gaussian curve for the pendulum angle 0, a triangle

for the angular velocity AO, and a trapezoid for the velocity v. But all the ZE fuzzy sets

will be centered about the numerical value zero, which will have maximum membership in

the set of zero values.

How much should contiguous fuzzy sets overlap? This design issue depends on the

problem at hand. Too much overlap blurs the distinction between the fuzzy set values.

Too little overlap tends to resemble bivalent control, producing overshoot and undershoot.

In Chapter 19 we determine experimentally the following default heuristic for ideal overlap:

Contiguous fuzzy sets in a library should overlap approximately 25%.

FAM rules are triples, such as (NM, Z; PM). They describe how to modify the con-

trol variable for observed values of the pendulum state variables. A FAM rule associates

a motor-velocity fuzzy set value with a pendulum-angle fuzzy set value and an angular-

velocity fuzzy set value. So we can interpret the triple (NM, Z; PM) as the set-level
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implication

IF the pendulum angle 0 is negative but medium

AND the angular velocity AO is about zero

THEN the motor velocity should be positive but medium

These commonsensical FAM rules are comparatively easy to articulate in natural language.

Consider a terser linguistic version of the same three-antecedent FAM rule:

IF 0 = NM AND AO = ZE,

THEN v = PM.

Even this mild level of formalism may inhibit the knowledge acquisition process. On the

other hand, the still terser FAM triple (NM, ZE; PM) allows knowledge to be acquired

simply by filling in a few entries in a linguistic FAM-bank matrix. In practice this often

allows a working system to be developed in hours, if not minutes.

We specify the pendulum FAM system when we choose a FAM bank of two-antecedent

FAM rules. Perhaps the first FAM rule to choose is the steady-state PAM rule: (ZE, ZE; ZE).

The steady-state FAM rule describes what to do in equilibrium. For the inverted pendulum

we should do nothing.

This is typical of many control problems that require nulling a. scalar error ineasure.

We can control muitiva.riahle problems by nulling the norms of the system error vector

and error-velocity vectors, or, better, by directly nulling the individual scalar variables.

(Chapter 19 shows how error nulling can control a realtime target tracking system.) Error

nulling tractably extends the FANI methodology to nonlinear estimation, control, and

decision problems of high ldiniensioin.
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The pendulum FAM bank is a 7-by-7 matrix with linguistic fuzzy-set entries. We index

the columns by the seven fuzzy sets that quantize the angle 0 universe of discourse. We

index the rows by the seven fuzzy sets that quantize the angular velocity AO universe of

discourse.

Each matrix entry is one of seven motor-velocity fuzzy-set values. Since a FAM rule is a

mapping or function, there is exactly one output velocity value for every pair of angle and

angular-velocity values. So the 49 entries in the FAM bank matrix represent the 49 possible

two-antecedent FAM rules. In practice most of the entries are blank. In the adaptive FAM

case discussed below, we adaptively generate the entries from process sample data.

Commonsense dictates the entries in the pendulum FAM bank matrix. Suppose the

pendulum is not changing. So AO = ZE. If the pendulum is to the right of vertical,

the motor velocity should be negative to compensate. The farther the pendulum is to

the right, the larger the negative motor velocity should be. The motor velocity should

be positive if the pendulum is to the left. So the fourth row of the FAM bank matrix,

which corresponds to AO = ZE, should be the ordinal inverse of the 0 row values. This

assignment includes the steady-state FAM rule (ZE, ZE; ZE).

Now suppose the angle 0 is zero but the pendulum is moving. If the angular velocity is

negative, the pendulum will overshoot to the left. So the motor velocity should be positive

to corrpensate. If the angular velocity is positive, the motor velocity should be negative.

The greater the angular velocity is in magnitude, the greater the motor velocity should

be in magnitude. So the fourth column of the FAM bank matrix, which corresponds to

0 = ZE, should be the ordinal inverse of the AO column values. This assignment also

includes the steady-state FAM rule.

Positive 0 values with negative AO values should produce negative motor velocity values,

since the pendulum is heading toward the vertical. So (PS, NS; NS) is a candidate FAM

rule. Symmetrically, negative 0 values with positive AO values should produce positive

motor velocity values. So (NS, PS; PS) is another candidate FAM rule.

This gives 15 FAM rules altogether. In practice these rules are more than sufficient to

successfully balance an inverted pendulum. Different, and smaller, subsets of FAM rules

may also successfully balance the pendulum.
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We can represent the bank of 15 FAM rules as the 7-by-7 linguistic matrix

0
0

A0 NL NM NS ZE PS PM PL

NL

NM PM_

NS

A\ 0 ~.-

PS "_NS,

PM N M

PL

The BIOFAM system F also admits a geometric interpretation. The set of all possible

input-outpairs (0, AO; F(O, AO)) defines a FAM surface in the input-output product space,

in this case in R. We plot examples of these control surfaces in Chapters 18 and 19.

The BIOFAM inference procedure activates in parallel the antecedents of all 15 FAM

rules. The binary or pulse nature of inputs picks off single fit values from the quantizing

fuzzy sets. We can use either the correlation-minimum or correlation-product inferenc-

ing technique. For simplicity we shall illustrate the procedure with correlation-minimum

inferencing.

Suppose the current pendulum angle 0 is 15 degrees and the angular velocity AO is

-10. This amounts to passing two bit vectors of one 1 and all else 0 through the BIOFAM

system. What is the corresponding motor velocity value v = F(15, -10)?

Consider first how the input data pair (15, -10) activates steady-state FAM rule (ZE, ZE;

ZE). Suppose we define the antecedent and consequent fuzzy sets for ZE with the trian-

gular fuzzy set membership functions in Figure 17.4. Then the angle datum 15 is a zero

angle value to degree .2 m E(15) = .2. The angular velocity datum -10 is a zero
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angular velocity value to degree .5: m6;(-10) = .5.

We combine the antecedent fit values with ninimum or maximum according as the

antecedent fuzzy sets are combined with the conjunctive AND or the disjunctive OR.

Intuitively, it should be at least as difficult to satisfy both antecedent conditions as to

satisfy either one separately.

The FAM rule notation (ZE, ZE; ZE) implicitly assumes that antecedent fuzzy sets

are combined conjunctively with AND. So the data satisfy the compound antecedent of

the FAM rule (ZE, ZE; ZE) to degree

min(inZE(15), i7iZ.(-10)) =rinin(.2, .5)

.2

Clearly this methodology extends to any number of antecedent terms connected with ar-

bitrary logical (set-theoretical) connectives.

The system should now activate the consequent fuzzy set of zero motor velocity values

to degree .2. This is not the same as activating the ZE motor velocity fuzzy set 100% with

probability .2, and certainly not the same as Prob{v = 0} = .2. Instead a deterministic

20% of ZE should result and, according to the additive combination formula (17), should

be added to the final output fuzzy set.

The correlation-minimum inference procedure activates the angular velocity fuzzy set

ZE to degree .2 by taking the pairwise minimum of .2 and the ZE fuzzy set m1E:

min(mE(15), m'8(-10)) A rn.ZE(V) = .2 A m zE(V)

for all velocity values v. The correlation-product inference procedure would simply multiply

the zero angular velocity fuzzy set by .2: .2 m7E(v) for all v.

The data similarly activate the FAM rule (PS, ZE; NS) depicted in Figure 17.A. The

angle datum 15 is a small but positive angle value to degree .8. The angular velocity datum

-10 is a zero angular velocity value to degree .5. So the output motor velocity fuzzy set of

small but negative motor velocity values is scaled by .5, the lesser of the two antecedent

fit values:
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min(^,S(15), 17""(-10)) A in-.S(v = .5 A z's(V)

for all velocity values v. So the data activate the FAM rule (PS, ZE; NS) toogreater degree

than the steady-state FAM rule (ZE, ZE; ZE) since in this example an angle value of 15

degrees is more a small but positive angle value than a zero angle value.

The data similarly activate the other 13 FAM rules. We combine the resulting minimum-

scaled consequent fuzzy sets according to (17) by summing pointwise. We can then com-

pute the fuzzy centroid with equation (19), with perhaps integrals replacing the discrete

sums, to determine the specific output motor velocity v. In Chapter 19 we show that, for

symmetric fuzzy sets of quantization, the centroid can always be computed exactly with

simple discrete sums even if the fuzzy sets are continuous. In many realtime applications

we must repeat this entire FAM inference procedure hundreds, perhaps thousands, of times

per second. This requires fuzzy VLSI or optical processors.

Figure 17.4 illustrates this equal-weight additive combination procedure for just the

FAM rules (ZE, ZE; ZE) and (PS, ZE; NS). The fuzzy-centroidal motor velocity value

in this case is -3.
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o V

- -3 0 +
' V

FIGURE 17.4 FAM correlation-minimum inference procedure. The FAM

system consists of the two two-antecedent FAM rules (PS, ZE; NS) and

(ZE, ZE; ZE). The input angle datum is 15, and is more a small but pos-

itive angle value than a zero angle value. The input angular velocity datum

is -10, and is only a zero angular velocity value to degree .5. Antecedent fit

values are combined with minimum since the antecedent terms are combined

conjunctively with AND. The combined fit value then scales the consequent

fuzzy set with pairwise minimum. The minimum-scaled output fuzzy sets are

added pointwise. The fuzzy centroid of this output waveform is computed and

yields the system output velocity value -3.

Multi-Antecedent FAM Rules: Decompositional Inference

The BIOFAM inference procedure treats antecedent fuzzy sets as if they were propo-

sitions with fuzzy truth values. This is because fuzzy logic corresponds to I-dimensional
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fuzzy set theo,'y and because we use binary or exact inputs. We now formally develop tile

connection between BIOFAMs and the FAM theory presented earlier.

Consider the comlpound FAM rule "IF X is A AND 1' is B , THEN C is Z,"

or (A, B; C) for short. Let the universes of discourse X, Y, and Z have dimensions n, p,

andq: X = {xl,...,x}, Y = {yl,...,y,}, and Z = {zl,...,zq}. We can directly

extend this framework to multiple antecedent and consequent terms.

In our notation X, Y, and Z are both universes of discourse and fuzzy variables. The

fuzzy variable X can assume the fuzzy set values A1 , A2,..., and similarly for the fuzzy

variables Y and Z. When controlling an inverted pendulum, the identification "X is A"

might represent the natural-language description "The pendulum angle is positive but

small."

What is the matrix representation of the FAM rule (A, B; C)? The question is nontriv-

ial since A, B, and C are fuzzy subsets of different universes of discourse, points in different

unit cubes. Their dimensions and interpretations differ. Mamdani [1977] and others have

suggested representing such rules as fuzzy multidimensional relations or arrays. Then the

FAM rule (A, B; C) would be a fuzzy subset of the product space X x Y x Z. This rep-

resentation is not used in practice since only exact inputs are presented to FAM systems

and the BIOFAM procedure applies. If we presented the system with a genuine fuzzy set

input, we would no doubt preprocess the fuzzy set with a centroidal or maximum-fit-value

technique so we could still apply the BIOFAM inference procedure.

We present an alternative representation that decomposes, then recomposes, the FAM

rule (A, B; C) in accord with the FAM inference procedure. This representation allows

neural networks to adaptively estimate, store, and modify the decomposed FAM rules. The

representation requires far less storage than the nultidimensional-array representation.

Let the fuzzy Hebb matrices MAC and MBC store the simple FAM associations (A, C)

and (B, C):

MAC = AT o C , (20)

AlBc = BT o C (21)
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The fuzzy Hebb matrices AIAC and AIBc split the compound FAM rule (A, B; C). We can

construct the splitting matrices with correlation-product encoding.

Let 4 = (0 ... 0 1 0 ... 0) be an n-dimensiona.l bit vector with ith element I and all

other elements 0. I is the ith row of the n-by-n identity matrix. Similarly, I, and I are

the respective jth and kth rows of the p-by-p and q-hy-q identity matrices. The bit vector

Io represents the occurrence of the exact input Xi.

We will call the proposed FAM representation scheme FAM decompositional infer-

ence, in the spirit of the max-min compositional inference scheme discussed above. FAM

decompositional inference decomposes the compound FAM rule (A, B; C) into the com-

ponent rules (A, C) and (B, C). The simpler component rules are processed in parallel.

New fuzzy set inputs A' and B' pass through the PAM matrices IAC and MAc-. Max-min

composition then gives the recalled fuzzy sets CA, and CB,:

CA' = A' o MAc (22)

CB' = B' o MBc (23)

The trick is to recompose the fuzzy sets CA, and CB' with intersection or union according

as the antecedent terms "X is A" and "Y is B" are combined with AND or OR. The negated

antecedent term "X is NOT A" requires forming the set complement C', for input fuzzy

set A'.

Suppose we present the new inputs A' and B' to the single-FAM-rule system F that

stores the FAM rule (A, B; C). Then the recalled output fuzzy set C' equals the intersec-

tion of CA, and CB,:

I"(A', B') [A' o Ac] n [B' o M,c]

( ,.4' n CH' (24)

CI .

We can then defuzzify C', if we wish, to yield the exact output. I.
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The logical connectives apply to the antecedent terms of different dimension and mean-

ing. Decompositional inference applies the set-theoretic analogues of the logical connectives

to subsets of Z. Of course all subsets C' of Z have the same dimension and meaning.

We now prove that decompositional inference generalizes BIOFAM inference. This gen-

eralization is not simply formal. It opens an immediate path to adaptation with arbitrary

neural network techniques.

Suppose we present the exact inputs xi and yj to the single-FAM-rule system F that

stores (A, B; C). So we present the unit bit vectors I and I. to F as nonfuzzy set inputs.

Then

F(xi, yj) F(I ), ".) [I. o MAc] n [I' oa MBc]

= a AC n bj A C (25)

= min(ai, bj) A C . (26)

(25) follows from (8). Representing C with its membership function mc, (26) is equivalent

to the BIOFAM prescription

min(a,, bj) A mc(z) (27)

for all z in Z.

If we encode the simple FAM rules (A, C) and (B, C) with correlation-product encoding,

decompositional inference gives the BIOFAM version of correlation-product inference:

F(II) ' o ATC] n [I I, o 13"FC]

= a C n hj C (28)

min(a,, bj) C (29)

=min(a,, bj),?nc(z) (30)

for all z in Z. (13) implies (28). min(a, ck, bj Ck) : min(a,, bj) ck implies (29).
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Decompositional inference allows arbitrary fuzzy sets, waveforms, or distributions A'

and B' to be applied to a FAM system. The FAM system can house an arbitrary FAM

bank of compound FAM rules. If we use the FAM system to control a process, the input

fuzzy sets A' and B' can be the output of an independent state-estimation system, such

as a IKalman filter. A' and B' might then represent probability distributions on the exact

input spaces X and Y. The filter-controller cascade is a common engineering architecture.

We can split compound consequents as desired. We can split the compound FAM rule

"IF X is A AND Y is B,TIHEN Z is C OR W is D," or(A,B; C,D),

into the FAM rules (A, B; C) and (A, B; D). We can use the same split if the consequent

logical ,.onnective is AND.

We can give a propositional-calculus justification for the decompositional inference

tech,'ique. Let A, B, and C be bivalent propositions with truth values t(A), t(B), and

t(C) in {0, 11. Then we can construct truth tables to prove the two consequent-splitting

tautologies that we use in decompositional inference:

[A - (B OR C)] - [(A B) OR (A - C)], (31)

[A - (BANDC)j [(A - B) AND (A - C)] , (32)

where the arrow represents logical implication.

In bivalent logic, the implication A - B is false iff the antecedent A is true and the

consequent B is false. Equivalently, t(A --+ B) = I iff 1(A) = 1 and t(B) = 0.

This allows a "brief" truth table to be constructed to check for validity. We chose truth

values for the terms in the consequent of the overall implication (31) or (32) to make

the consequent false. Given those restrictions, if we cannot find truth values to make the

antecedent true, the statement is a tautology. In1 (31), if t((A --+ B) OR (A --- C)) = 0,

then I') = 1 and t(13) = t(C) 0, since a disjunction is false iff both disjuncts are

false. This forces the antecedent A -- (3 OR C) to be false. So (31) is a tautology: It

is truie iII all cases.

NW can also justify splitting the compound FAM rule "IF X is A OR Y is 13,

TIIEN Z is C " into the disjunction (union) of the two simplle AM rules "IF X is A,
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THEN Z is C " and "IF Y is B , THEN Z is C " with a proposition d tautology:

[(A OfR B) C-01-- [(A C) OR (B-- C)l1. (33)

Now consider splitting the original compound FAM rule "IF X is A AND Y is B

THEN Z is C " into the conjunction (intersection) of the two simple FAM rules "IF X

is A , THEN Z is C " and "IF Y is B , THEN Z is C ." A problem arises when

we examine the truth table of the corresponding proposition

[(A AND B) --- C] &- [(A j C) AND (B - C)] (34)

The problem is that (34) is not always true, and hence not a tautology. The implication

is false if A is true and B and C arc false, or if A and C are false and B is true. But the

implication (34) is valid if both antecedent terms A and B are true. So if t(A) = t(B) = 1,

the compound conditional (A AND B) -- C implies both A --+ C and B --* C.

The simultaneous occurrence of the data values xi and yj satisfies this condition. Recall

that logic is 1-dimensional set theory. The condition t(A) = t(B) = 1 is given by the 1 in

l and the 1 in IX-'. We can interpret the unit bit vectors I and Iy, as the (true) bivalent

propositions "X is xi" and "Y is yj." Propositional logic applies coordinate-wise. A

similar argument holds for the converse of (33).

For general fuzzy set inputs A' and B' the argument still holds in the sense of continuous-

valued logic. But the truth values of the logical implications may be less than unity while

greater than zero. If A' is a null vector and B' is not, or vice versa, the implication (34)

is false coordinate-wise, at least if one coordinate of the non-,uill vector is unity. But in

this case the decompositional inference scheme yields an output. nIull vector C'. In effect

the FAM system indicates the propositional falsehood.

Adaptive Decompositional Inference

The decomlpositional inference scheme allows the splitting 711(ttric's AI4AC and A 13Ac to
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be arbitrary. Indee, it allows them to be eliminated altogether.

Let Nx : P -- 19 be an arbitrary neural neiwork system that maps fuzzy subsets A'

of X to fuzzy subsets C' of Z. Ny : 1, _ I q can be a different neural network. In general

Nx and Ny are time-varying.

The adaptive decompositional inference (A 1)i) schemce allows compound FAM rules to

be adaptively split, stored, and modified by arbitrary neural networks. The com)ound

FAM rule "IF X is A AND Y is B, THEN Z is C," or (A, B; C), can be split

by Nx and Ny. Nx can house the simple FAM association (A, C). N- can house (B, C).

Then for arbitrary fuzzy set inputs A' and B', ADI proceeds as before for an adaptive

FAM system F: P x IP -- Iq that houses the FAM rule (A, B; C) or a bank of such

FAM rules:

F(A',B') = Nx(A') n Ny(B') (35)

= CA, n CB'

= C,

Any neural network technique can be used. A reasonable candidate for many un-

structured problems is the backpropagation algorithm applied to several small feedforward

multilayer networks. The primary concerns are space and training time. Several small

neural networks can often be trained in parallel faster, and more accurately, than a single

large neural network.

The ADI approach illustrates one way neural algorithms can be embedded in a FAM

architecture. Below we discuss another way that uses unsupervised clustering algorithms.

ADAPTIVE FAMs: PRODUCT-SPACE CLUSTERING

IN FAM CELLS

An adaptive FAM (AFAM) is a. time-varying mapping between fuzzy cubes. In

principle the adaptive decompositional inference technique generates AI"AMs. But we
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shall reserve the label '\FAM for systems that generate FAM rules from training data but

that do not require splitting and recombining FAM data.

We propose a geometric AFAM procedure. The procedure adaptively clusters training

samples in the FAM system input-output product space. FAM mappings are balls or clusters

in the input-output product space. These clusters are simply the fuzzy Ilebb matrices

discussed above. The procedure "blindly" generates weighted FAM rules from training

data. Further training modifies the weighted set of FAM rules. We call this unsupervised

procedure product-space clustering.

Consider first a discrete 1-dimensional FAM system S : In -4IP. Then a FAM rule

has the form "IF X is Ai , THEN Y is B " or (Ai, B,). The input-output product

space is I x I P.

What does the FAM rule (Ai, Bj) look like in the product space I" x IP? It looks like a

cluster of points centered at the numerical point (A, B). The FAM system maps points

A near Ai to points B near Bi. The closer A is to A, the closer the point (A, B) is to the

point (Ai, B,) in the product space P x P. In this sense FAMs map balls in I n to balls

in I P. The notation is ambiguous since (Ai, Bi) stands for both the FAM rule mapping,

or fuzzy subset of I" x I P, and the numerical fit-vector point in In x I p .

Adaptive clustering algorithms can estimate the unknown FAM rule (Ai, Bi) from train-

ing samples of the form (A, B). In general there are m unknown FAM rules (A 1 , B 1 ), ... ,

(Am, Bin). The number m of FAM rules is also unknown. The user may select m arbitrarily

in many applications.

Competitive adaptive vector quantization (AVQ) algorithms can adaptively estimate

both the unknown FAM rules (A, Bi) and the unknown number ?n of FAM rules from

FAM system input-output data. The AVQ algorithms do not require fuzzy-set data.. Scalar

BIOFAM data suffices, as we illustrate below for adaptive estimation of inverted-pendulum

control FAM rules.

Suppose the r fuzzy sets A 1, ... , A, quantize the input universe of discourse X. The

.s fuzzy sets Ii, ... , 13 quantize the output universe of discourse Y. In general r and s

are unrelated to each other and to the number in of FAM rules (Ai, B,). The user must

specify r an(. s and the shape of the fuzzy sets A, and B,. In practice this is not difficult.
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Quantizing fuzzy sets are usually trapezoidal, and r and s are les:< than 10.

The quantizing collections {A;} and {Bj} define rs FAM cells Fj in the input-output

product space P x I . The FAM cells Fi overlap since contiguous quantizing fuzzy sets A,

and Ajil, and Bj and Bi+1 , overlap. So the FAM cell collection {F,} does not partition

the product space In x I . The union of all FAM cells also does not equal P x IP since

the patches Fij are fuzzy subsets of In x IP. The union provides only a fuzzy "cover" for

In x Ip.

The fuzzy Cartesian product A x Bi defines the FAM cell Fi,. Ai x Bi is just the

fuzzy outer product AToBi in (6) or the correlation product AT Bi in (12). So a FAM cell

Fij is simply the fuzzy correlation-minimum or correlation-product matrix Mi Fi, = M,.

Adaptive FAM Rule Generation

Let iMn,. . . , mk be k quantization vectors in the input-output product space I" x IP

or, equivalently, in I'+P. mi is the jth column of the synaptic connection matrix M. M

has n + p rows and k columns.

Suppose, for instance, mj changes in time according to the differential competitive

learning (DCL) AVQ algorithm discussed in Chapters 6 and 9. The competitive system

samples concatenated fuzzy set samples of the form [AIBI. The augmented fuzzy set [AIB]

is a point in the unit hypercube I"+ p.

The synaptic vectors mi converge to FAM matrix centroids in In X Ip.More generally

they estimate the density or distribution of the FAM rules in ' x I". The quantizing

synaptic vectors naturally weight the estimated FAM rule. The more synaptic vectors

clustered about a centroidal FAM rule, the greater its wveight wj in (17).

Suppose there are 15 FAM-rule centroids in I" x I' and k > 15. Suppose k, synaptic

vectors m, cluster around the ith centroid. So k, + ... + k15 = k. Suppose the clustcr

counts k, are ordered as

k, > k2 > ... ki5  (36)
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The first centroidal FAM rule is as at least as frequent as the second centroidal FAM

rule, and so on. This gives the adaptive FAM-rule weighting scheme

Wi = ki (37)

k

Tile FAM rule weights wi evolve in time as new augmented fuzzy sets [AIBI are sampled.

In practice we may want only the 15 most-frequent FAM rules or only the FAM rules with

at least some minimum frequency w,,.,. Then (37) provides a quantitative solution.

Geometrically we count the number kj, of quantizing vectors in each FAM cell Fi. We

can define FAM-cell boundaries in advance. High-count FAM cells outrank low-count FAM

cells. Most FAM cells contain zero or few synaptic vectors.

Product-space clustering extends to compound FAM rules and product spaces. The

FAM rule "IF X is A AND Y is B, THEN Z is C", or (A, B; C), is a point in

I, X Ip X [q. The t fuzzy sets C,...,Cj quantize the new output space Z. There are

rst FAM cells Fijk. (36) and (37) extend similarly. X, Y, and Z can be continuous. The

adaptive clustering procedure extends to any number of FAM-rule antecedent terms.

Adaptive BIOFAM Clustering

BIOFAM data clusters more efficiently than fuzzy-set FAM data. Paired numbers are

easier to process and obtain than paired fit vectors. This allows system input-output data

to directly generate FAM systems.

In control applications, human or automatic controllers generate streams of "well-

controlled" system input-output data. Adaptive BIOFAM clustering converts this data.

to weighted FAM rules. The adaptive system transduces behavioral data to behavioral

rules. 'rite fuzzy system learns causal patterns. It learns which control inputs cause which

control outputs. The system approximates these causal patterns when it acts as the con-

troller.

Adaptive BIOFAMs cluster in the input-output product space X x Y . The product

space X x Y is vastly smaller than the power-set product space In x IP used above. The
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adaptive synaptic vectors nj are now 2-dimensional instead of n + p-dimensional. On

the other hand, competitive BIOFAM clustering requires many more input-output data

pairs (xi,yi) c ft2 than a.ugmented fuzzy-set sam)les [AIB] c I"+P

Again our notation is ambiguous. We now use xi as the numerical sample from X

at sample time i. Earlier xi denoted the ith ordered element in the finite nonfuzzy set

X = {xl,. . .,x }. One advantage is X can be continuous, say R"L.

BIOFAM clustering counts synaptic quantization vectors in FAM cells. The system

samples the nonfuzzy input-output stream (x,y),(x2 ,y 2),.. Unsupervised competitive

learning distributes the k synaptic quantization vectors ml,..., Mk in X x Y. Learning

distributes them to different FAM cells Fj. The FAM cells Fij overlap but are nonfuzzy

subcubes of X x Y. The BIOFAM FAM cells F,, cover X x Y.

Fij contains kij quantization vectors at each sample time. The cell counts kj define a

frequency histogram since all kij sum to k. So wij k- weights the FAM rule "IF X is-- k

Ai, THEN Y is Bj."

Suppose the pairwise-overlapping fuzzy sets NL, NM, NS, ZE, P S, PM, PL quan-

tize the input space X. Suppose seven similar fuzzy sets quantize the output space Y. We

can define the fuzzy sets arbitrarily. In practice they are normal and trapezoidal. (The

boundary fuzzy sets NL and PL are ramp functions.) X and Y may each be the real line.

A typical FAM rule is "IF X is NL, THEN Y is PS."

Input datum xi is nonfuzzy. When X = xi holds, the relations X = NL,..., X = PL

hold to different degrees. Most hold to degree zero. X = NM holds to degree mNM(Xi).

Input datum xi partially activates the FAM rule "IF X is NM, THEN Y is ZE" or,

equivalently, (NA; ZE). Since the FAM rules have single antecedents, xi activates the

consequent fuzzy set ZE to degree MNAf(x.x) as well. Multi-antecedent FAM rules activate

output consequent sets according to a logic-based function of antecedent term membership

values, as discussed above on BIOFAM inference.

Suppose Figure 17.5 represents the input-output data stream (XI, yj), (x 2 , y2), •. in the

planar product space X x V:
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FIGURE 17.5 Distribution of input-output data (xi, y,) in the input-output

product space X x Y. Data clusters reflect FAM rules, such as the steady-state

FAM rule "IF X is ZE, THEN Y is ZE".

Suppose the sample data in Figure 17.5 trains a DCL system. Suppose such competi-

tive learning distributes ten 2-dimensional synaptic vectors rim,. .. , io as in Figure 17.6:
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FIGURE 17.6 Distribution of ten 2-dimensional synaptic quantization vec-

tors m 1,..., m 1 0 in the input-output product space X x Y. As the FAM system

samples nonfuzzy data (xi, yi), competitive learning distributes the synaptic

vectors in X x Y. The synaptic vectors estimate the frequency distribution of

the sampled input-output data, and thus estimate FAM rules.

FAM cells do not overlap in Figures 17.5 and 17.6 for convenience's sake. The corre-

sponding quantizing fuzzy sets touch but do not overlap.

Figure 17.5 reveals six sample-data clusters. The six quantization-vector clusters in

Figure 17.6 estimate the six sample-data clusters. The single synaptic vector in FAM cell

(P A; NS) indicates a smaller cluster. Since k = 10, the number of quantization vectors

in each FAM cell measures the percentage or frequency weight wjy of each possible FAM

rule.
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In general the additive combination rule (17) does not recuire normalizing the quantization-

vector count ksj. wij = kij is acceptable. This holds for both maximum-membership de-

fuzzification (18) and fuzzy centroid defuzzification (19). These defuzzification schemes

prohibit only negative weight values.

The ten quantization vectors in Figure 17.6 estimate at most six FAM rules. From most

to least frequent or "important", the FAM rules are (ZE; ZE), (PS; NS), (NS; PS),

(PM; NS), (PL; NL), and (NL; PL). These FAM rules suggest that fuzzy variable X is

an error variable or an error velocity variable since the steady-state FAM rule (ZE; ZE) is

most important. If we sample a system only in steady-state equilibrium, we will estimate

only the steady-state FAM rule. We can accurately estimate the FAM system's global

behavior only if we representatively sample the system's input-output behavior.

The "corner" FAM rules (PL; NL) and (NL; PL) may be more important than their

frequencies suggest. The boundary sets Negative Large (NL) and Positive Large (PL)

are usually defined as ramp functions, as negatively and positively sloped lines. NL and

PL alone cover the important end-point regions of the universe of discourse X. They give

MNL(X) = mPL(x) = 1 only if x is at or near the end-point of X, since IVL and PL are

ramp functions not trapezoids. NL and PL cover these end-point regions "briefly". Their

corresponding FAM cells tend to be smaller than the other FAM cells. The end-point

regions must be covered in most control problems, especially error nulling problems like

stabilizing an inverted pendulum. The user can weight these FAM-cell counts more highly,

for instance wij = c ki for scaling constant c > 0. Or the user can simply include these

end-point FAM rules in every operative FAM bank.

Most FAM cells do not generate FAM rules. More accurately, we estimate every possible

FAM rule but usually with zero or near-zero frequency weight wij. For large numbers of

multiple FAM-rule antecedents, system input-output data streams through comparatively

few FAM cells. Structured trajectories in X x V are fev.

A FAM-rule's mapping structure also limits the number of estimated FAM rules. A

FAM rule maps fuzzy sets in In or F(2x) to fuzzy sets in IP or F(21). A fuzzy associative

memory maps every domain fuzzy set A to a unique range fuzzy set B. Fuzzy set A cannot

map to multiple fuzzy sets B, B', B", and so on. We write the FAM rule as (A; B) not
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(A' B or B' or B" or.. .). So we estimate at most one rule per FAM-cell row in Figure

17.6.

If two FAM cells in a row are equally and highly frequent, we can pick arbitrarily either

FAM rule to include in the FAM bank. This occurs infrequently but call occur. In principle

we could estimate the FAM rule as a compound FAM rule with a. disjunctive consequent.

The simplest strategy picks only the highest frequency FAM cell per row.

The user can estimate PAM rules without counting the quantization vectors in each

FAM cell. There may be too many FAM cells to search at each estimation iteration.

The user never need examine FAM cells. Instead the user checks the synaptic vector

components niij. The user defines in advance fuzzy-set intervals, such as [INL, UNLI for

NL. If INL < "ki < UNL, then the FAM-antecedent reads "IF X is NL."

Suppose the input and output spaces X and Y are the same, the real interval [-35, 35].

Suppose we partition X and Y into the same seven disjoint fuzzy sets:

NL = [-35, -25]

NM = [-25, -15]

NS = [-15, -5]

ZE = [-5, 5]

PS = [5, 151

PM = [15, 25]

PL = [25, 35]

Then the observed synaptic vector mnj = [9, -10] increases the count of FAM cell

PS x NS and increases the weight of FAM rule "IF X is PS, THEN Y is NS."

This amounts to nearest-neighbor classification of synaptic quantization vectors. We

assign quantization vector 1nk to FAM cell Fi1 iff n1 is closer to the centroid of Fj than,

to all other FAM-cell centroids. We break ties arbitrarly. Centroid classification allows

the FAM cells to overlap.
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Adaptive BIOFAM Example: Inverted Pendulum

We used DCL to train an AFAM to control the inverted pendulum discussed above.

We used the accompanying C-software to generate 1,000 pendulum trajectory data. These

product-space training vectors (0, AO, v) were points in R'. lendulum angle 0 data

ranged between -90 and 90. Pendulum angular veclocity AO data ranged from -150 to

150.

We defined FAM cells by uniformly partitioning the effective product space. Fuzzy

variables could assume only the five fuzzy set values NM, NS, ZE, PS, and PM. So

there were 125 possible FAM rules. For instance, the steady-state FAM rule took the form

(ZE, ZE; ZE) or, more completely, "IF 0 = ZE AND AO = ZE, THEN v = ZE."

A BIOFAM controlled the inverted pendulum. The BIOFAM restored the pendulum

to equilibrium as we knocked it over to the right and to the left. (Function keys F9 and

F10 knock the pendulum over to the left and to the right. Input-output sample data

reads automatically to a training data file.) Eleven FAM rules described the BIOFAM

controller. Figure 17.1 displays this FAM bank. Observe that the zero (ZE) row and

column are ordinal inverses of the respective row and column indices.

0
NM NS Z PS PM

NM pM

NS PS Z

AO z PM PS Z NS NM

PS Z NS

PM NM

FIGURE 17.7 Inverted-pendulum FAM bank used in simulation. This

49



BIOFAM generated 1,000 samplh" vectors of thc form (0, AO, v).

We trained 125 3-dimensional synaptic quantization vectors wi .h differential Com)Ct-

itive learning, as discussed in Chapters 4,6, and 9. In )rinci)ie the 125 synaptic vectors

could describe a uniform distribution of product-space trajectory data. Then the 125

FAM cells would each contain one synaptic vector. Alternatively, if we used a vertically

stabilized pendulum to generate the 1,000 training vectors, all 125 synaptic vectors would

concentrate in the (ZE, ZE; ZE) FAM cell. This would still be true if we only mildly

perturbed the pendulum from vertical equilibrium.

DCL distributed the 125 synaptic vectors to 13 FAM cells. So we estimated 13 FAM

rules. Some FAM cells contained more synaptic vectors than others. Figure 17.8 displays

the synaptic-vector histogram after the DCL samples the 1,000 samples. Actually Figure

17.8 displays a truncated histogram. The horizontal axis should list all 125 FAM cells,

all 125 FAM-rule weights Wk in (17). The missing 112 entries have zero synaptic-vector

frequency.

Figure 17.8 gives a snapshot of the adaptive process. In practice, and in principle,

successive data gradually modify the histogram. "Good" training samples should include

a significant number of equilibrium samples. In Figure 17.8 the steady-state FAM cell

(ZE, ZE; ZE) is clearly the most frequent.
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FIGURE 17.8 Synaptic-vector histogram. Differential competitive learn-

ing allocated 125 3-dimensional synaptic vectors to the 125 FAM cells. Here

the adaptive system has sampled 1,000 representative pendulum-control dta.

DCL allocates the synaptic vectors to only 13 FAM cells. The steady-state

FAM cell (ZE, ZE; ZE) is most frequent.

Figure 17.9 displays the DCL-estimated FAM bank. The product-space clustering

method rapidly recovered the 11 original FAM rules. It also estimated the two additional

FAM rules (PS, NM; ZE) and (NS, PM; ZE), which did not affect the BIOFAM

system's performance. The estimated FAM bank defined a BIOFAM, with all 13 FAM-

rule weights set Wk equal to unity, that controlled the pendulum as well as the original

1110"A M did.



0
NM NS Z PS PM

NM PM Z

NS PS Z

AO z PM PS Z NS NM

PS Z NS

PM Z NM

FIGURE 17.9 DCL-estimated FAM bank. Product-space clustering re-

covered the original 11 FAM rules and estimated two new FAM rules. The new

and original BIOFAM systems controlled the inverted pendulum equally well.

In nonrealtime applications we can in principle omit the adaptive step altogether. We

can directly compute the FAM-cell histogram if we exhaustively count all sampled data.

Then the (growing) number of synaptic vectors equals the number of training samples. This

procedure equally weights all samples, and so tends not to "track" an evolving process.

Competitive learning weights more recent samples more heavily. Competitive learning's

i ctricl -clssi ficatiol step also helps filter noise from the streanii of sample data.
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PROBLEMS

1. Use correlation-minimum encoding to construct the FAM matrix M from the fit-

vector pair (A, B) if A = (.6 1 .2 .9) and B = (.8 .3 1). Is (A, B) a bidirectional

fixed point? Pass A' = (.2 .9 .3 .2) through M and B' = (.9 .5 1) through MT.

)o the recalled fuzzy sets differ from B and A?
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2. Repeat Problem 1 using correlation-product encoding.

3. Compute the fuzzy entropy E(M) of M in Problems I and 2.

4. If Al = A7' o B in Problem 1, find a different FAM matrix M' with greater fuzzy

entropy, E(M') > E(M), but that still gives perfect recall: A o M' = B.

Find the maximum entropy fuzzy associative memory (MEFAM) matrix M* such

that A o M* = B.

5. Prove: If M = AT o B or M = AT B,A o M = B, and A C A', then

A'oM=B.

6. Prove: max min(ak, bk) < min( max ak, max bk).
<k<. "<k<m <k<rm

7. Use truth tables to prove the two-valued propositional tautologies:

(a) [A - (B ORC) - [(A--B) OR (A -

(b) [A- (BANDC)] - [(A- B) AND (A C),

(c) [(A OR B)--C] [(A - C) OR (B- C)]

(d) [(A - C) AND (B - C)] -+ [(A AND B) - C]

Is the converse of (c) a tautology? Explain whether this affects BIOFAM inference.

8. BIOFAM inference. Suppose the input spaces X and Y are both 1-10, 10], and the

output space Z is [-100, 1001. Define five trapezoidal fuzzy sets-NL, NS, ZE, PS, PL-

on X, Y, and Z. Suppose the underlying (unknown) system transfer function is

z =x 2 - y2 . State at least five FAM rules that accurately describe the system's
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behavior. Use z = X
2 

_ y2 to generate streams of sample data. Use BIOFAM in-

ference and fuzzy-centrcid defuzzification to map input pairs (x, y) to output data z.

Plot the BIOFAM outputs and the desired outputs z. What is the arithmetic average

of the squared errors (F(x,y) - x 2 + y2)2 ? Divide the product space X x Y x Z

into 125 overlapping FAM cells. Estimate FAM rules from clustered system data

(x, y, z). Use these FAM rules to control the system. Evaluate the performance.

Software Problems

The following problems use the accompanying FAM software for controlling an inverted

pendulum.

1. Explain why the pendulum stabilizes in the diagonal position if the pendulum bob

mass increases to maximum and the motor current decreases slightly. The pendulum

stabilizes in the vertical position if you remove whiih FAM rules?

2. Oscillation results if you remove which FAM rules? The pendulum sticks in a hori-

zontal equilibrium if you remove which FAM rules?

5 6



ADAPTIVE FUZZY SYSTEM FOR
TARGET TRACKING

Peter J. Pacini and Bart Kosko
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ABSTRACT

We compared fuzzy and Kalman-filter control systems for realtime target tracking.

Both systems performed well, but in the presence of mild process (unmodeled effects) noise

the fuzzy system exhibited finer control. We tested the robustness of the fuzzy controller

by removing random subsets of fuzzy associations or "rules" and by adding destructive or

"sabotage" fuzzy rules to the fuzzy system. We tested the robustness of the Kalman track-

ing system by increasing the variance of the unmodeled-effects noise process. The fuzzy

controller performed well until we removed over 50% of the fuzzy rules. I1 K I.alman con-

troller's performance quickly degraded as the unmodeled-effects variance increased. We

used unsupervised neural-network learning to adaptively generate the fuzzy controller's

fuzzy-associative-memory structure. The fuzzy systems did not require a mathematical

model of how system outputs depended on inputs.
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Fuzzy and Math-Model Controllers

Fuzzy controllers differ from classical math-model controllers. Fuzzy controllers do

not require a mathematical model of how control outputs functionally depend on control

inputs. Fuzzy controllers also differ in the type of uncertainty they represent and how they

represent it. The fuzzy approach represents ambiguous or fuzzy system behavior as partial

implications or approximate "rules of thumb"-as fuzzy associations (Ai, B).

Fuzzy controllers are fuzzy systems. A finite fuzzy set A is a point [Kosko, 1987] in

a unit hypercube In = [0, 11'. A fuzzy system F : In --+ IP is a mapping between

unit hypercubes. In contains all fuzzy subsets of the domain space X = {xj,.Xn}.

In is the fuzzy power set F(2x) of X. IP contains all the fuzzy subsets of the range

space Y = {y.... , yp}. Element xi c X belongs to fuzzy set A to degree rnA(xi). The 2 n

nonfuzzy subsets of X correspond to the 2 n corners of the fuzzy cube In.The fuzzy system

F maps fuzzy subsets of X to fuzzy subsets of Y. In general, X and Y are continuous not

discrete sets.

Math-model controllers usually represent system uncertainty with probability dis-

tributions. Probability models describe system behavior with first-order and second-order

statistics-with conditional means and covariances. They usually describe unmodeled ef-

fects and measurement imperfections with additive "noise" processes.

Mathematical models of the system state and measurement processes facilitate a mean-

squared-error analysis of system behavior. In general we cannot accurately articulate such

mathematical models. This greatly restricts the range of realworld applications. In practice

we often use linear or quasi-linear (Markov) mathematical models.

Mathematical state and measurement models also make it difficult to add non-mathem-

atical knowledge to the system. Experts may articulate such knowledge, or neural networks

may adaptively infer it from sample data. In practice, once we have articulated the math

model, we use human expertise only to estimate the initial state and covariance conditions.

Fuzzy controllers consist of a bank of fuzzy associative memory (FAM) "rules" or

associations (Aj, B,) operating in parallel, and operating to different degrees. Each FAM
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rule is a -et-level implication. It represents ambiguous expert knowledge or learned input-

output transformations. A FAM rule can also summarize the behavior of a specific math-

ematical model. The system nonlinearly transforms exact or fuzzy state inputs to a fuzzy

set output. This output fuzzy set is usually "defuzzified" with a centroid operation to

generate an exact numerical output. In principle the system can use the entire fuzzy dis-

tribution as the output. We can easily construct, process, and modify the FAM bank of

FAM rules in software or in digital VLSI circuitry.

Fuzzy controllers require that we articulate or estimate the FAM rules. The fuzzy-set

framework provides more expressiveness than, say, traditional expert-system approaches,

which encode bivalent propositional associations. But the fuzzy framework does not elimi-

nate the burden of knowledge acquisition. We can use neural network systems, to estimate

the FAM rules. But neural systems also require an accurate (statistically representative)

set of articulated input-output numerical samples. Below we use unsupervised competitive

learning to adaptively generate target-tracking FAM rules.

Experts can hedge their system descriptions with fuzzy concepts. Although fuzzy con-

trollers are numerical systems, experts can contribute their knowledge in natural language.

This is especially important in complex problem domains, such as economics, medicine,

and history, where we may not know how to mathematically model system behavior.

Below we compare a fuzzy controller with a Kalman-filter controller for realtime target

tracking. This problem admits a simple and reasonably accurate mathematical description

of its state and measurement processes. We chose the Kalman filter as a benchmark because

of its many optimal linear-systems properties. We wanted to see whether this "optimal"

controller remains optimal when compared with a computationally lighter fuzzy controller

in diffcicnt uncertainty environments.

We indirectly compared the sensitivity of the two controllers by varying their system

uncertainties. We randomly removed FAM rules from the fuzzy controller. We also added
"sabotage" FAM rules to the controller. Both techniques modeled less-stuctured control

environments. For the Kalman filter, we varied the noise variance of the unmodeled-effects

noise process.

Both systems performed well for mildly uncertain target environments. They degraded



differently as the system uncertainty increases. The fuzzy controller's performance de-

graded when we removed more than half the FAM rules. The Kalman-filter controller's

performance quickly degraded when the additive state noise process increased in variance.

Realtime Target Tracking

A target tracking system maps azimuth-elevation inputs to motor control outputs. The

nominal target moves through azimuth-elevation space. Two motors adjust the position

of a platform to continuously point at the target.

The platform can be any directional device that accurately points at the target. The

device may be a laser, video camera, or high-gain antenna. We assume we have available

a radar or other device that can detect the direction from the platform to the target.

The radar sends azimuth and elevation coordinates to the tracking system at the end

of each time interval. We calculate the current error ek in platform position and change in

error 4. Then a fuzzy or Kalman-filter controller determines the control outputs for the

motors, one each for azimuth and elevation. The control outputs reposition the platform.

We can independently control movement along azimuth and elevation if we apply the

same algorithm twice. This reduces the problem to matching the target's position and

velocity in only one dimension.

Figure 1 shows a block diagram of the target tracking system. The controller's output

Vk gives the estimated change in angle required during the next time interval. In principle

a hardware system must transduce the angular velocity vk into a voltage or current.
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Clock Lachl k

Platform
Position

FIGURE 1 Target tracking system.

FUZZY CONTROLLER

We restrict the output angular velocity Vk of the fuzzy controller to the interval [-6, 6].

So we must insert a gain element before the voltage transduction. This gain must equal

one-sixth the maximum angle through which the platform can turn in one time interval.

Similarly, the position error ek must be scaled so that 6 equals the maximum error. The

product of this scale factor and the output gain provides a design parameter-the "gain"

of the fuzzy controller.

The fuzzy controller uses heuristic control set-level "rules" or fuzzy associative memory

(FAM) associations based on quantized values of ek, ck, and vk-1 . We define seven fuzzy

levels by the following library of fuzzy-set values of the fuzzy variables ek, ek, and vk-1:
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LN Large Negative

MN Medium Negative

SN Small Negative

ZE Zero

SP Small Positive

MP Medium Positive

LP Large Positive

We do not quantize inputs in the classical sense that we assign each input to exactly

one output level. Instead, each linguistic value equals as a fuzzy set that overlaps with

adjacent fuzzy sets. The fuzzy controller uses trapezoidal fuzzy-set values, as Figure 2

shows. The lengths of the upper and lower bases provide design parameters that we must

calibrate for satisfactory performance. A good rule of thumb is adjacent fuzzy-set values

should overlap approzimately 25 percent. Below we discuss examples of calibrated and

uncalibrated systems. The fuzzy controller attained its best performance with upper and

lower bases of 1.2 and 3.9-26.2% overlap. Different target scenarios may require more or

less overlap.

2

1.5

LN MN SN ZE SP MP LP

0.5-

0/
-8 -6 -4 -2 0 2 4 6 8

UNIVERSE OF DISCOURSE

FIGURE 2 Library of overlapping fuzzy-set values defined on a universe
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of discourse.

We assign each system input to a fit vector of length 7, where the ith fit, or fuzzy unit

[Kosko, 1986], equals the value of the ith fuzzy set at the input value. In other words,

the ith fit measures the degree to which the input belongs to the ith fuzzy-set value. For

instance, we apply the input values 1, -4, and 3.8 to the seven fuzzy sets in the library to

obtain the fit vectors

1 - (0 0 0 .7 .7 0 0)

-4 -- (0 1 0 0 0 0 0)

3.8 -- (0 0 0 0 .1 1 0)

We determine these fit values above by convolving a' Dirac delta function centered at the

input value with each of the 7 fuzzy sets:

msp(3.8) = 5(y - 3.8) * msp(y) = .1 (1)

If we use a discretized universe of discourse, then we use a Kronecker delta function in-

stead. Equivalently, for the discrete case n-dimensional universe of discourse X = {xj,...,

x,}, a control input corresponds to a bit (binary unit) vector B of length n. A single 1

element in the ith slot represents the "crisp" input value xi. Similarly, we represent the

kth library fuzzy set by an n-dimensional fit vector Ak that contains samples of the fuzzy

set at the n discrete points within the universe of discourse X. The degree to which the

crisp input xi activates each fuzzy set equals the inner product B- Ak of the bit vector B

and the corresponding fit vector Ak.

We formulate control FAM rules by associating output fuzzy sets with input fuzzy sets.

The antecedent of each FAM rule conjoins ek, ek, and T'k-I fuzzy-set values. For example,

IF Ck = MP AND C = SN AND Vk-I = ZE, THEN vk = S.

\Ve abbreviate this as (MP, SN, ZE; SP).
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The scalar activation value wi of the ith FAM rule's consequent equals the minimum

of the three antecedent conjuncts' values. If alternatively we combine the antecedents

disjunctively with OR, the activation degree of the consequent would equal the maximum

of the three antecedent disjuncts' values. In the following example, mA(Ck) denotes the

degree to which Ck belongs to the fuzzy set A:

LN MN SN ZE S!P M13 LI)

Ck = 2.6 -- (0 0 0 0 1 .4 0)

Ck = -2.0 -- (0 0 1 0 0 0 0)

Vk-1 = 1.8 - (0 0 0 .1 1 0 0)

M fMP(Ck) = .4

mSN(ek) = 1

mZE(Vk-1) = .1

wi = min(.4, 1, .1) = .1

So the system activates the consequent fuzzy set SP to degree wi .1.

The output fuzzy set's shape depends on the FAM-rule encoding scheme used. With

correlation-minimum encoding, we clip the consequent fuzzy set Li in the library of fuzzy-

set values to degree wi with pointwise minimum:

rno,(y) = m nn(wi,,n.,y)) (2)

With corrclation-product encoding, we multiply Li )y wi:

710.Y Tj1,,,, , (3)

or equivaletly,

O, wi Li (4)

Figre 3 ill tstrates how bothi inferenc proc(dures trasforin L to scaled outi)ut Oi. For
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the example above, correlation-product inference gives output fuzzy set Oi = .1SP,

where Li SP denotes the fuzzy set of small but positive angular velocity values.

(a)

Consequent L Otdput 0 i

(b)

Consequent Li Output 0 i

FIGURE 3 FAM inference procedure depends on FAM rule encoding proce-

dure: (a) correlation-minimum encoding, (b) correlation-product encoding.

The fuzzy system activates each FAM rule consequent set to a different degree. For the

ith FAM rule this yields the output fuzzy set Oi. The system then sums the Oi to form

the combined output fuzzy set 0:

N

o = o, (5)

or equivalently,

N

7o-(y) = j3?no,(y) (6)
i=1

The control output Vk equals the fuzzy cctroid of 0:

/ 1.wo(y)dy

J, 7
f(V)@



where the limits of integration correspond to the entire universe of discourse Y of angular

velocity values. Figure 4 shows an example of correlation-product inference for two FAM

rules followed by centroid defuzzification of the combined output fuzzy set.

SP ZE ZE SP

It e, = SP and c,= ZE and v,.1 = ZE.
then v. =SP. ZE SP SN' ZE

It e, = ZE and e,= SP and v,., =SN. A a a
!hn v. = Za a

a a

ek ek Vk-1

Vk

FIGURE 4 Correlation-product inferences followed by centroid defuzzifi-

cation. FAM rule antecedents combined with AND use the minimum fit value

to activate consequents. Those combined with OR use the maximum fit value.

To reduce computations, we can discretize the output universe of discourse Y to p values,

Y = {yi, .-,YP}, which gives the discrete fuzzy centroid

P

Z yj 7,0(yj)j=1

-= (8)Z"mo(y2 )
j=1

Fuzzy Centroid Computation

\Ve now develop two discrete methods for computing the fuzzy centroid (7). Theorem

I staltes that we can compute the global cerntroid vk from local FAM-rule centroids. The-

oreti 2 states that Vk can be computed from only 7 saml)le points if all the fuzzy sets

It)



are symmetric and unimodal (in the broad sense of a trapezoid peak), though otherwise

arbitrary. Both results reduce computation and favor digital implementation.

Theorem 1: If correlation-product inference determines the output fuzzy sets, then we

can compute the global centroid Vk from local FAM-rule centroids:

N

- '7' (9)

Proof. The consequent fuzzy set of each FAM rule equals one of the fuzzy-set values

shown in Figure 2. We assume each fuzzy set includes at least one unity value, IA(x) = 1.

Define Ii and ci as the respective area and centroid of the ith FAM rule's consequent set

Li:

Ii mLj(Y)dY (10)

J y mL,(y)dy

fmL.(Y)dY

J Y mL,(y)dy

substituting from (10). Hence

I y n,(y)dj c, I, (11)

Using (3), the result of correlation-product inference, we get

Y tno.(y)dy Y J i yII-Ln,(y)dy
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-wi f y Tnit.(y)dy

Iw, ci , (12)

substituting from (11). Similarly,

J mo,(y) ,y = J w, ,,,.(y)dy

= wii , (13)

substituting from (10).

We can usc (12) and (13) to derive a discrete expression equivalent to (7):

y mo(y)dy f yi no,(y)]dy substituting from (6)
i=1

- >_wicih , (14)

from (12). Similarly,

Jmo(y)dy 770 J mo(y)dy

- Jmo,(y)tdy
? i, , (15)

fromt (13). Substituting (14) and (15) into (7), we derive a new form for the centroid:
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N

w1 ci i

Vk I= (16)

i=1

which is equivalent to (9). Each summand in each summation of (16) depends on only

a single FAM rule. So we can compute the global output centroid from local FAM-rule

centroids. Q.E.D.

Theorem 2: If the 7 library fuzzy sets are symmetric and unimodal (in the trapezoidal

sense) and we use correlation-product inference, then we can compute the centroid Vk from

only 7 samples of the combined output fuzzy set 0:

7

Zmo( y) yj Ji

= (17)
Z_,mo(yj) 13
j=1

The 7 sample points are the centroids of the output fuzzy-set values.

Proof. Define 0i as a fit vector of length 7, where the fit value corresponding to

the ith consequent set has the value wi, and the other entries equal zero. If all the fuzzy

sets are symmetric and unimodal, then the jth fit value of Oi is a sample of to, at the

centroid of the jth fuzzy set. The combined output fit vector is

N

6 = Oi (18)
i=1

Since
Nrno(y) Z oy

i=1

the jtl fit, valc of 0 is a sample of mo at the centroid of the jth fuzzy set. Equivalently,

the jth fit value of 0 equals the suim of the output activations w, from the FAM rules with
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consequent fuzzy sets equal to the jth library fuzzy-sct value.

Define the reduced universe of discourse as Y = {y,. - -,Y) such that yj equals the

centroid of the jth output fuzzy set. In vector form

Y (Y1,.-.,Y7)

= (-6, -4, -2, 0, 2, 4, 6)

for the library of fuzzy sets in Figure 2. Also define the diagonal matrix

J = diag(JS,...,J 7 ) , (19)

where Jj denotes the area of the 3th fuzzy-set value. If the ith FAM rule's consequent fuzzy

set equals the 2 th fuzzy-set value, then the jth fit value of 6 increases by wi, ci = yj,

and Ii = Jj. So
7 N

ojyT = Zmo(yj)yJj = Zwic,Ii (20)

j=1 i=1

Also,
7 N

OjJ1 T E mo(y)J 3  = Zwil , (21)

j=1 i=1

where 1 = (1,...,1). Substituting (20) and (21) into (16) gives

7 ,: o (Yj) Yj j
=1 7 (22)

7Zo(Yj) Jj
j=l

which is equivalent to (17). Therefore, (22) gives a simpler, but equivalent form of the

centroid (7) if all the fuzzy sets are symmetric and uniniodal, and if we use correlation-

product inference to form the output fuzzy sets Oj. Q.E.D.

Consider a fuzzy controller with the fuzzy sets defined in Figure 2, and 7 FAM rules

with the following outputs:
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Z wi Consequent

1 0.0 MP

2 0.2 SP

3 1.0 ZE

4 0.4 SN

5 0.1 SP

6 0.8 ZE

7 0.6 SN

Figure 5 shows the combined output fuzzy set 0, with the SN, ZE, and SP components

displayed with dottcd lines. Using (7) we get a velocity output of -0.452. Alternatively,

the combined output fit vector 0 equals (0, 0, 1.0, 1.8, 0.3, 0, 0). From (22) we get

-2 x 1 + 0 x 1.8 + 2 x 0.3 =
I= + -0.4521 ± 1.8 ± 0.3
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2.

Li

0.5

0
-4 -3 -2 0 I 2

UNVESE OF DISCOURSE

FIGURE 5 Output fuzzy set 0.

Fuzzy Controller Implementation

A FAM bank or "rulebase" of FAM rules defines the fuzzy controller. Each FAM rule

associates one consequent fuzzy set with three antecedent fuzzy-set conjuncts.

Suppose the ith FAM rule is (MP, SN, ZE; SP). Suppose the inputs at time k are

ek = 2.6, ek = -2.0, and Vk-1 = 1.8. Then

wi = min(mAp(ek), ?nSN(C*k), 7?ZE(Vk-,))

= nin(.4, 1, .1)

=.1.

If all the fuzzy sets have the same shape, then they correspond to shifted versions of a

16



single fuzzy set ZE:

mfsp(y) = nz,(y - 2)

Define e', ' and vW as the centroids of the corresponding antecedent fuzzy sets in the

example above. So e~ 4, 6' =--2, and v' 0. Then the output activation equals

wi= mnf(rntZE(ek - e'), rnZE(4~ - i), ?7fLZE(Vk-l - Vi))

= mln(mZE(-1.4), mZE(0), MZE(1 .8))

=min(.4, 1, .1)

as computed above. Figure 6 schemnatizes such a FAM rule when presented with crisp

inputs.

+ t

e

e + MZE adnInference O

I v

v +

FIGURE 6 Algorithmic structure of a FAM rule for- the special case of

idialy-shaped fuzzy sets and correlation -prod uct ifrne
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The output fuzzy set Oi in Figure 6 equals the fuzzy set ZE scaled by w, and shifted

by cj:

mo,(y) = ,o,,,17(Y- C,) (23)

Figure 7 illustrates Oi.

Mo. (y)

IW 11------
1 Y

C-
I

FIGURE 7 Trapezoidal output fuzzy set Oi.

The fuzzy control system activates a bank of FAM rules operated in parallel, as shown

in Figure 8. The system sums the output fuzzy sets to form the total output set 0, which

the system converts to a "defuzzified" scalar output by computing its fuzzy centroid.

18
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e I
k 0

FAM Rule2 2

e k 0 Defuzzifier Vk

vk- I
- FAM ule N

FIGURE 8 Fuzzy control system as a parallel FAM bank with centroidal

output.

KALMAN FILTER CONTROLLER

We designed a one-dimensional Kaliman filter to act as an alternative controller. The

state and measurement equations take the general form

xk+1 = 4Dk+lk Xk + k+l,k Wk + 'k+l,k Uk

Zk =HkXk + k , (24)

where Vk denotes Gaussian white noise with covariance matrix Rk. If Ik is colored noise

or if Rk = 0, then the filtering-error covariance matrix Pkjk becomes singular. The state xk

and the measurements zk are jointly Gaussian. Mendel [19871 gives details of this model.
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Ass-ime the following one-dimensional model:

4k+l,k= 'k+l,k = lk+l,k = Il= 1 for all k,

uk = ek + . (25)

Let Xk+1 denote the output velocity required at time k to exactly lock onto the target at

time k+ 1. So the controller output at time k equals the "predictive" estimate ik+1Ik = Vk.

Note that

Ck = Xk - Xkjkl-

= :klk-I

=k - ek - ek-1

Substituting (25) into (24), we get the new state equation

Xk+1 = k + ek + ek +wk , (26)

where wk denotes white noise that models target acceleration or other unmodeled effects.

The new measurement equation is

Zk = Xk + /k-

= :klk-I + Xkk-i + Ik- (27)

= ikik-I + Il'

Since we assume Xklk-I and Vk are uncorrelated, the variance of 14. is

OE[i~L- J + El k) (28)

20



= PkIk- + R k

The general form of the recursive Kalhnan filtcr equations is

Xklk - :klk-I + Kk[zk - Ilk -k-l]I

lk =PkIk-HIllk[Ilklkl 1  + k k]

k+llk = 4Dk+l,k iklk + 'k+l,k Uk (29)

Pkjk-1 = 4 k,k-1Pk-1k-i 4 ,k-I + k,k-iQk-1Ik,k-I

PkIk = [I - KkIIkPkjk_ ,

where Qk = Var(wk) = E[wkwf]. Substituting (25), (27), (28) and the definition of Vk

into (29), we get the following one-dimensional Kalman filter:

1kjk Vk-l + Kkll'

Kk - Pkjk-l

Rk

Vk = :1k + ek + ek , (30)

Pkjk- = Pk-ilk-I + Qk-1

Pkjk [1 - I'k]Pkjlk-I

Unlike the fuzzy controller, this Kalman filter does not automatically restrict the output

Vk to a usable range. We must apply a threshold immediately after the controller. To

remain consistent wvith the fuzzy controller, we set the following thresholds:

I Vk[ < 9 degrees azimuth ,

I Vk < 4.5 degrees elevationi.

21



Fuzzy and Kalman Filter Control Surfaces

Each control system maps inputs to outputs. Geometrically, these input-output trans-

formations define control surfaces. The control surfaces are sheets in tile input space

(since tile output velocity vk is a scalar). Three inputs and one output give rise to a

four-dimensional control surface, which we cannot plot. Instead, for each controller we can

plot a family of three-dimensional control surfaces indexed by constant values of the fourth

variable, the error ek, say. Then each control surface corresponds to a different value of

the error ek.

The fuzzy control surface characterizes the fuzzy system's fuzzy-set value definitions

and its bank of FAM rules. Different sets of FAM rules yield different fuzzy controllers,

and hence different control surfaces. Figure 9 shows a'cross section of the FAM bank when

e = ZE. Each entry in this linguistic matrix represents one FAM rule with ek = ZE

as the first antecedent term.

Vk-l

LN MN SN ZE SP MP LP

LN LN LN LN LN MN SN ZE

MN LN LN LN MN SN ZE SP

SN LN LN MN SN ZE SP MP

k ZE LN MN SN ZE SP MP LP

SP MN SN .ZE' SP MP LP LP

MP SN ZE SP MP LP LP LP

LP ZE SP MP LP LP LP LP

FIGURE 9 ck ZE cross seciion of tihe fuzzy control systemi's 'AM bank.

Each entry represents one i"ANi rule with C = ZE as the first alltece(lent term.
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TPhe shaded FAM rule is "IF Ck = ZE AND 6k = SP AND Vk-I = SN,

'I'IIEN vk = ZE," abbreviated as (ZE, SP, SN; ZE). Note the ordinal anti-

symmetry of this FAM-bank matrix. The six other cross-sectioi FAM-bank

matrices are similar. We can eliminate many FAM rule entries without greatly

perturbing the fuzzy controller's behavior.

The entire FAM bank-including cross sections for ek equal to each of tihe seven fuzzy-

set values LN, MN, SN, ZE, SP, MP, and LP-determines how the system maps input

fuzzy sets to output fuzzy sets. The fuzzy set membership functions shown in Figure 2

determine the degree to which each crisp input value belongs to each fuzzy-set value. So

both the fuzzy-set value definitions and the FAM bank determine the defuzzified output

vk for any set of crisp input values Ck, ck, and Vk-1.

Figure 10 shows the control surface of the fuzzy controller for ek = 0. We plotted the

control output vk against ek and vk-1. Since we use the same algorithm for tracking in

azimuth and elevation, the control surfaces for the two dimensions differ in scale only by

a factor of two.

FIGURE 10 (ont.rol surface of the fuzzy controller for collsalt. error

(k 0. W llottel the control oltl)ui t ;1 against C, aMid V)-I along the

'e; )ec t ivxe west a1n(d sotith borders.

The Ka 1man filter has a, ra ndom control surface tHia depenls on a timne-varying pa-
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rameter. From (30) we see that

Vk = kk + Ck + Ck

-ikk = vk-I + Kkli- I

where Vk denotes white noise with variance given by (28). Combining these two equations

gives the equation for the random control surface:

Vk = Vk-I +Ck +Ck + k I.' (31)

At time k the noise term KkVl' has variance

.2 K I2 R1 (32)

- upon substituting from (30)

Pkk-, + PIk

substituting from (28). Combining (31) and (32) gives a new control surface equation:

Vk = Vk_, + Ck + Ck + Uk~l.' (33)

where 1" (lcotes u ,lit-vanilcc Gaussian noise. So lire Karnl;ii filter's control output

e(l ials, the silt ofur the three inl pit variables pis aldditive (;aussiain noise with timc-delwildcnl

vatrian'e -7. For coiistant error ('k, we ca iiterlpret, (33) as i sin root.h control surface in k

defl tid hy

?!k :- "I- -I - ('k -+ (k
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and perturbe' at time k by Gaussian noise with variance C2.

In our simulations time standard dleviation O
6 k converged aftcr only a few itc:'ations. Wc

usedl unity initial conditions: PJk. 1 k for all k.

'able I lists tire convergenice rates and steady-state values Of Crk for three differen-

t valucs of the variance Var-(w) of the wite-noise, unmodeled-ellects process tvk. For

Var-(w) =0, O
0 k decreases rapidly at first-or8 .10, O, = .05-but does not attain

its steady-state value of zero within 100 Iterations.

Var(w) Steady-state Number of iterations

value Of Ork required1 for convergence

1.00 0.79 2

0.25 0.46 4

0.05 0.22 9

TABLE 1 Convergence rates and steady-state values of o0 k for different val-

ues of the variance Var(w) of the white-noise, unmodeled-effects process Wk.

Figure 11 shows four realizations of the Kalman filter's random control surface for

Ck =0, each at a time k whien O'k has convc-rged to its steady-state value. For eachi plot, we

used outpu~lt flircslholds and ini'tial varinces for the azimnurtli case: iVkI < (.0, Ik =Polo

=1.0. As withi the fuizzy controller, elevation control sm- faces equa.l scaled versions of tire

corresJpoidliig azi nirt ii control surrfaces.



(a) (b)

FIGURE 11 Realizations of the Kalman filter's random control surface

with ek =0 for different values of the variance Var(w) and steady-state values

of the standard deviation aO: (a) 1/ar(iv) = Ok= 0, (b) Var(iv) = .05,

Ok=.22; (c) Var(iv) =.25, O1k =.46; (d) Va?'(w) ==1.0, Ork .79.

SIMULATION RESULTS

Our- target- trackfig similabtis mlodel severall re;1lworld scenlarios. Suppose %we hiave

inoiioted tHe target tracki mg :iysteml oil tile Side of at vehlicle, air-craft, or- sip. Thle system

tracks a Iii issaice ti at, cli ts acros's le dletectionl range on at str ilglit flight path . Tihe target

1i1aillklllis a colnstaint, speed of I ,870) nilles-per-liotr anid coniues wittin :1.5 iuil('s of thie

26



platform at closest approach. The platform can scan from 0 to 180 degrees in azimuth at

a maximum rate of 36 degrees-per-second, and from 0 (vertical) to 90 degrees in elevation

at a maximum rate of 18 degrees-per-second. The sampling interval is 1/4 of a second.

The gain of the fuzzy controller equals 0.9. So the maximum error considcred is 10 degrees

azimuth and 5 degrees elevation. We threshold all error values above this level.

Figure 12 demonstrates the best performance of the fuzzy controller for a simulated

scenario. The solid lines indicate target position. The dotted lines indicate platform

position. To achieve this performance, we calibrated the three design parameters-upper

and lower trapezoid bases and the gain. Figures 13 and 14 show examples of uncalibrated

systems. Too much overlap causes excessive overshoot. Too little overlap causes lead or

lag for several consecutive time intervals. A gain of 0.9 suffices for most scenarios. We

can fine-tune the fuzzy control system by altering the percentage overlap betweerradjacent

fuzzy sets.

Figure 15 demonstrates the best performance of the Kalman-filter controller for the

same scenario used to test the fuzzy controller. For simplicity, Rk = P010 for all values of

k. For this study we chose the values 1.0 (unit variance) for azimuth and 0.25 for eleva-

tion. This 1/4 ratio reflects the difference in scanning range. We set Qk to 0 for optimal

performance. Figure 16 shows the Kalman-filter controller's performance when Qk = 1.0

azimuth, 0.25 elevation.

Sensitivity Analysis

We compared the uncertainty sensitivity of the fuzzy and lahtnan-filter control systems.

lUnder normal operating conditions, when the [AM bank contains all fuzzy control rules,

and 11 when tile umi odeled-effects noise variance Var(w) is small, the controllers performu

al most identically. U3nder more 1m ncertai n conditions their performance <liffers. The Kalman

filter's state eqatLion (26) contai ms the noise term w. whose variance we must assume.

When l/a7(w) increases, tile state equation becomes more uncertain. The fuzzy control
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FAM rules depend implicitly on this same equation, but without the noise term. Instead,

the fuzziness of the FAM rules accounts for the system uncertainty. This suggests that we

can increase the uncertainty of the implicit state equation by omitting randomly selected

FAM rules. Figures 17 and 18 show the effect on the root-mean-squared error (RMSE) in

degrees when we omit FAM rules and increase Var(w). Each data point averages ten runs.

The controllers behave differently as uncertainty increases. The RMSE of the fuzzy

controller increases little until we omit nearly sixty percent of the FAM rules. The RMSE

of the Kalman filter increases steeply for small values of Var(w), then gradually levels off.

We also tested the fuzzy controller's robustness by "sabotaging" the most vulnerable

FAM rule. This could reflect lack of accurate expertise, or a highly unstructured problem.

Changing the consequent of the steady-state FAM rule (ZE, ZE, ZE; ZE) to LP gives the

following nonsensical FAM rule:

IF the platform points directly at the target

AND both the target and the platform are stationary,

THEN turn in the positive direction with maximum velocity.

Figure 19 shows the fuzzy system's performance when this sabotage FAM rule replaces

the steady-state FAM rule. When the sabotage FAM rule activates, the system quickly

adjusts to decrease the error again. The fuzzy system is piecewise stable.
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FIGURE 12 Best performance of the fuzzy controller: (a) azimuth position

and error, (b) elevation position and error. Fuzzy set overlap is 26.2%.
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FIGURE 14 Uncalibrated fuzzy controller: (a) azimuth position and error,

(b) elevation position and error. F-uzzy set overlap equals 12.5%. Too little

overlap causes lead or lag for several consecutive time Intervals.
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FIGURE 15 K~al man filter controller with u nmodeled -effects noise variance

Var(w) = 0: (a) azimuth position and error, (b) elevation position and error.
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FIGURE 16 Nalman filter controller wvithi V/a(w) =1.0 azimuth, 0.25

elevation: (a) azimuth position an(I error, (1) elevation position and error.
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FIGURE 17 Root-mean-squared error of the fuzzy controller with random-

ly selected FAM rules omitted.
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FIGURE 18 Root-ncan-squared error of the IKahnm filter controller ais
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FIGURE 19 ltuzzy controller with a "sabotage" FAM rule: (a.) azimuth po-

sition and error, (b) elevation position and eior. The sabotage rule (Z/<, Z E', Z E; LP)

replaces the steadv-state ['AM rule (ZE, ZE, ZE; ZE). The systell) q u ickly

adjusts each time the. salotage rile activates.
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Adaptive FAM (AFAM)

We used unsupervised product-si)ace clustering [Kosko, 1990a] to train all adaptive

FAM (AFAM) fuzzy controller. Differential competitive learning (DCL) adaptively clus-

tered input-output pairs. The Appendix describes product-space clustering with DCL. For

this study, there were four input neurons in F. A manually-designed FAM bank and 80

random target trajectories generated 19,236 training vectors. Each product-space training

vector (Ck, 6k, vk-l, Vk) defined a point in ft0.

Symmetry allowed us to reflect about the origin all sample vectors with negative errors

ek. We then trained 3,000 synaptic quantization vectors (p = 3, 000) in the positive error

half-space. For each sample vector, we defined the 10 closest synaptic vectors as "winners"

(N = 10). The matrix W of Fy within-field synaptic connection strengths had diagonal

elements wii = 2.9, off-diagonal elements wij = -0.1. After training, we reflected the

3,000 synaptic quantization vectors about the origin to give 6,000 trained synaptic vectors.

The product-space FAM cells uniformly partitioned the four-dimensional product

space. Each FAM cell represented a single FAM rule. The four fuzzy variables could assume

only the 7 fuzzy-set values LN, MN, SN, ZE, SP, MP, and LP. So the product space

contained 74 = 2401 FAM cells.

At the end of the DCL training period, we defined a FAM cell as occupied only if it

contained at least one synaptic vector. For some combinations of antecedent fuzzy sets,

synaptic vectors occupied more than one FAM cell with different consequent fuzzy sets. In

these cases we computed the centroid of tie consequent fuzzy sets weighted by the number

of synaptic vectors iii their FAM cells. We chose the consequent fuzzy set as that output

fuzzy-set, vallie. with centroid nearest the weighted centroid value. We ignored other FAM

rules with the s iu n anitece(deIIts but (lifferent conisequ(ent fuzzy sets.

Figure 20(a) s1hows the'(:k = /F cross section of th( original "ANI bank used to

generate th traiii sam pln,. l"igure 20(b) shows the same cross section of the l)CL-

,sti l,ted IA I M a 1Ik. Figiire 21 sliows the original and l)CL-estimated control surfaces

for constant. error ( -- ().



for constant error ck 0.

The regions where the two control surfaces differ corrcspond to infrequent high-velocity

situations. So the original and 1)CL-cstimated control surfaces yield similar results. Table

2 compares the controllers' root-mean-squared errors for 10 randomly-selected target tra-

jectories.

Vk-1 Vk- l

LN MN SN ZE SP MP LP LN MN SN ZE SP MP LP

I__ N1Jf MN SN Z
IMN I I _ S ZE SP JN -- ____ Sp

SN (MN SN ZE S M]SN (MN SN ZE SP M

ek ZE MN SN ZE SP MP ek ZE MN MN SN ZE SP MP MP

SP SP NIP SP MN S ZE SP Np

MP SN ZE SP MP MP SN ZE SP M

LP ZE SP MP LP ZE SP MpI

(a) (b)

FIGURE 20 Cross sections of the original and DCL- estimated FAM banks

whcn ck = ZE: (a) original, (b) DCL- estimated.
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(a) (b)

FIGURE 21 Control surfaces for constant error ek =0: (a) original,

(b) DCL-estimated.



Trajectory A zimnuth Elevation

Niinber Original Estinmated Originnal Estimated

1 2.33 2.33 3.31 :3.37

2 4.14 4.14 13.03 2.89
3 .1 6.11 3.69 3.68

4 3.83 3.83 3.32 :3.3 0

5 4.02 4.02 3.11 3.10

6 2.84 2.84 1.20 1.21

7 3.22 3.22 3.04 2.98

8 0.75 0.74 2.00 2.00

9 9.28 9.27 5.50 5.41

10 1.81 1.81 2.29 2.29

Average 3.83 3.83 3.05 3.02

TABLE 2 Root-mean-2quared errors for 10 randomly-selected target tra-

jectories. The original and DCL-estimated FAM banks yielded similar results

since they differed only in regions corresponding to infrequent high-velocity

situations.

Conclusion

\Ve dlevelopecd and compared a fuizzy control systemi id a IKalmian-filter control systeml

for realtime target, tracking. nie fuizzy System rCIpreseltC(l un1certality with counit1OIS or

fuizzy sets, with the partial occurience of imuilltiple alterniatives. The Khlan-filter system

represen tedl titcertai nty with1 the random occiiirence of an exact. alternative. Accordingly,

ouir slimulations tested each systein's response to a (1ifferent. familly of uincertainty enlvi-

roi mients, one ftizzy and the other randlom. hii gelierAI rep resentati ve tratining d1ata can

"l)hn(fly" genecratec the govering FA NI ruiles.
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These simulations suggest that in many cases fuzzy controllers may be a robust, com-

putationally effective alternative to linear Kalman filter, indeed to nonlinear extended

Kalman filter, approaches to realtime system control-even when we can accurately artic-

ulate an input-output math model.
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Appendix: Product-space Clustering with

Differential Competitive Learning

Adaptive Vector Quantization

Product-space clustering [Kosko, 1990a is a form of stochastic adaptive vector quanti-

zation. Adaptive vector quantization (AVQ) systems adaptively quantize pattern clusters

in Rn. Stochastic competitive-learning systems are neural AVQ systems. Neurons com-

pete for the activation induced by randomly sampled patterns. The corresponding fan-in

vectors adaptively quantize the pattern space Rn. The p synaptic vectors mj define the

p columns of the synaptic connection matrix M. M interconnects the n input or linear

neurons in the input neuronal field Fx to the p competing nonlinear neurons in the output

field Fy. Figure 22 below illustrates the neural network topology.

Learning algorithms estimate the unknown probability density function pkx), which

describes the distribution of patterns in R . More synaptic vectors arrive at more probable

regions. Where sample vectors x are dense or sparse, synaptic vectors mn should bc dense

or sparse. The local count of synaptic vectors then gives a nonparametric estimate of the

volhme density P(IV) for volinue V C R':

P(V) p(x)dx (34)

Number of ij C V
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In the extreme case that V = Rn, this approximation gives P(V) = p/p = 1. For

improbable subsets V/, '(V) = O/p = 0.

Stochastic Competitive Learning Algorithms

The metaphor of competing neurons reduces to nearest-neighbor classification. The

AVQ system compares the current vector random sample x(t) in Euclidean distance to the

p columns of the synaptic connection matrix Al, to the p synaptic vectors n11 (t), . ., naP(t).

If the jth synaptic vector mrn(t) is closest to x(t), then the jth output neuron "wins" the

competition for activation at time t. In practice we sometimes define the nearest N synaptic

vectors as winners. Some scaled form of x(t) - mj(t) updates the nearest or "winning"

synaptic vectors. "Losers" remain unchanged: rn(t +-1) = m,(t). Competitive synaptic

vectors converge to pattern-class centroids exponentially fast [Kosko, 1990b].

The following three-step process describes the competitive AVQ algorithm, where the

third step depends on which learning algorithm updates the winning synaptic vectors.

Competitive AVQ Algorithm

1. Initialize synaptic vectors mi(O) = x(i),I = 1,..., p. Sample-dependent initial-

ization avoids many pathologies that can distort nearest-neighbor learning.

2. For random sainple x(t), find the closest or "winning" synaptic vector j(t):

[Im,(I) - x(t) = Inii ilIm,(t)- x(t)II , (36)

,,h,,e lxl x ±..+ ... x . sfiic. the squared Euclidean vector norm of x. \Ve

can define the N synaptic vectors closest to x as "winners."
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3. Update the winning synaptic vector(s) mj(t) with an appropriate learning algorithm.

Differential Competitive Learning (DCL)

Differentia.l competitive "synapses" learn only if the competing "neuron" changes its

competitive status [Kosko, 1990c]:

,hij =Sj(yj)[Si(xi) - m7iji (37)

or in vector notation,

Irii = S1(y)[S(x) - m , (38)

where S(x) = (S,(x,),...,Sn(x)) and m1j (mn,...,n ij). mnj denotes the synaptic

value between the ith ncuron in input field Fx and the jth neuron in competitive field

Fy. Nonnegative signal functions Si and Sj transduce the real-valued activations xi and

yi into bounded monotone nondecreasing signals Si(xi) and Si(yj). rhi and ,(yj) denote

the time derivatives of rnij and Sj(yj), synaptic and signal velocities. Sj(yj) measures the

competitive status of the jth competing neuron in F,. Usually Sj approximates a binary

threshold function. For example, Sj may equal a steep binary logistic sigmoid,

Sj(yj) +- , (39)1 + Cuy1

for some constant c > o. The jth neuron wins the laterally inhibitive competition if

.S = 1, loses if Sj = 0.

For discrete implementation, we use the I)CL algorithm as a stochastic differelce

c(Ial ion [Konig, 1991]:

my(t + I) = my(I) + c, AS 3(y(t))[S(x(I)) - mj(1)] if the jth neuro'n,, wins,('10)

'13



mi(t + 1) - mi(t) if the ith neuron loses. (41)

ASj(yj(t)) denotes the time change of the jth neuron's competition signal Sj(yj) in the

competition layer Fy:

AS,(yj(t)) = sgzSj(yj(t + )) - S,(yj('))] (42)

We define the signum operator sgn(x) as

1 If x > 0

sgn(x) - 0 if x = 0 (43)

-1 if X < 0

{ct} denotes a slowly decreasing sequence of learnifig coefficients, such as ct = .1(1 -

t/2000) for 2000 training samples. Stochastic approximation [Huber, 1981] requires a de-

creasing gain sequence {ct} to suppress random disturbances and to guarantee convergence

to local minima of mean-squared performance measures. The learning coefficients should

decrease slowly,

00

>3 c = 0 , (44)
t=1

but not too slowly,

00

4c < 00 (45)
t=I

Iharmonic-series coefficients, ct = 1/1, satisfy these constraints.

\Ve approximate the competitive signal difference ASJ as the activation difference Ayj:

AS,(yj(t)) Sg[yj(t + 1) - yj(t)] (4 6)

A~j(4) (17)
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input neurons in feedforward networks usually behave linearly: S1 (x) = xi, or S(x(t)) z x(t).

Then -.i update the winning synaptic vector mj(t) with

m1j(t + 1) = mj(t) + ct Ayj(t)[x(t) - mj(t)] (48)

\Vc update the Fy neuronal activations yi with the additive ,model

n p

y,(t 4 1) y,(t) + >+ E sk((()t)))mk1 - (49)
i k

For linear signal functions Si, the first sum in (49) reduces to an inner product of sample

and synaptic vectors:

Xidt),71ij(t ) = x T(t )mrj(t) - (50)
Ti

Then positive learning tends to occur-Ami1 > 0-when x is close to the jth synaptic

vector nj.

Since a binary threshold function approximates the output signal function Sk(yk), the

second sum in (49) sums over just the winning neurons: >: Wki for all winning neurons yk
k

The p x p matrix W contains the Fy within-field synaptic connection strengths. Di-

agonal elements wii are positive, off-diagonal elements negative. Winning neurons excite

themselves and inhibit all other neurons. Figure 22 shows the connection topology of the

laterally inhibitive DCL network.
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FIGURE 22 Topology of the laterally inhibitive DCL netwvork.
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Alhstiract

'lhe prob~alistic fouindations of completitive lea'rniing systerns are developedl. (ioumtimius ali(I dij<r4et,- for-
ilulations of unsupervised, supervised, and (I dierential comnpetitive learnh ig syst.enis are stildie1 'I'it, - sysl

estimate an unknown probability dcnsity function from randomn pattern sami)Ies and behave as adlaptive vector

quantizers. Synaptic vectors, in feedforward compctitive niciral networks, quantize tile pattern space arid] converge

to pattern class centroids or local probability miaxima. 'lhe stochastic calculus and a IA'aprmov argir neit pro%'e

that competitive synaptic vectors conrverge to centroids ex ponenti ally quickly. Convergence does riot dlepenrd onl a
specific dynamical mnodel of how neurronal activations chiange.

Feedforward Multilayer Competitive Learninug Systemns

Competitive learning systems are usually fecdforward mnulti layer neural networks. Neuirons com pete
for the activation induced by randomly sampled pattern vectors x ( R". An unknown probability densitN
function p(x) c6aractcrizes the continuious distribution of randomn pattern vectors x. A randon ti-vector
in of synaptic values fans-in to each competing neuron. The syniaptic vector iin, is the jth column of tire
synaptic connection matrix M.

Competition selects which synaptic vector in2j is modified by the training sample x. InI practice
competition is a metaphor for metrical pattern matching. Neuronal activation dynamics are seldom used.
The jth neuron "wins" at an iteration if the synaptic vector i is the closest, in Euclidean distance, of
the mn synaptic vectors to the random pattern x sampled at that iteration.

Some scaled form of the difference vector x - i1 additively modifies the closest synaptic vector
i. Different scaling factors determine different competitive learning systems. A positive scaling factor
" rewards" the winning jth neuron by making thre modified synaptic vector ini resemble the random sam~lel
x at least as much as did the unmodified synaptic vector i. A negative scaling factor "puniishres" the jth

neuron by making the modified synaptic vector i disresemible x more than did thre tinnodified synaptic
vector. Geometrically, negative scaling tends to move misclassifying synaptic vectors in I??i out of regions
of mnisclalsifi Cation.

Comnpetitivc learning systems canl be viewved as nonl-neural signal processing algoritlrns. As In a

correlation dletection system, random iniputs are metrically compared with the colurriii of thre mratrix At.
Pattern recognition (signal djetection) is nearest-neighbor template mi at ching. Du1rinrg tfraiii ng and the
systemi may always be traiig aut iriost one coliun of A! is mrodifiedu at a timle. 'Ibis lighitens roililiita;tioir

Atidi fatvi-, digltal Irhilleiireiitadtioii.
it ntoasserialivc1  conipetitivi' leoirrrirg systiemis have two livers or fields of nreul~rs. llii' Input daita

fiel FXof neurons 1)Lssa iiiony apleid patternr vector x forwardl tlrouigli air n-by-in niratrix Al

of synapitic values to ?n "cornipeting neurons ill thle fieldI l''. A symitrit c rn-by-lln nrurt rix
I V of with ii- field sviral~tic valties (lescrihw-s the compnletitioni II FY1 ha,. ;I positlivo ruuain diagonal (or
diagonal baird) With negativie or z'ero values elsewhere. lit prartct lee I hars Is down Irs rrinai diagmnal arnd
---is elsewhere. Autoassociative coinilltitive learning systelis recognize p);ieris More geun'rallv, t hey
estiriate probability density fir irtiors 1'( x)

IlctcroarssocziInICr' corripetitive learning systemns have three fields of neiirons. 'llre first. anid t hirdl fields

are ilnut, arid output. daita fields for samlinirg t he ranidomn vector association (x, z). lr second or "hi ddei'
field Contains thre Comipeting neuronis. 'The first arid thIird fioeh'k crur be coicaiti'rat,' i uto a silIrghe field of



n + 7) neurons. 0 ,p~etitve learning procecds as in the autoassociative case. Closest matche-s modify the
columns of th" ' ween-field matrices Al and N of synaptic values with the same difrerence-based learning
law.

In practice ieteroassociative COmpe'titive learning systems do not directly estimate an unknown joint

probability density function p(x, z). Instead they esinate a sampled continuous function f : R" - Rl'
from a large number of noisy random vector samples (xi, zi). Implicitly the functional pair (xi, f(xi))
belongs to a high-probability region of I" x RlP. These heteroassociative systems can be directly compared
with multilayer neural networks trained with the backpropagation algorithm and with the saine training
data. The competitive systems tend to learn faster, but less accurately, at least for small dimensions ti

anmd p.

Feedback autoassociative and lieteroassociative competitive learning systems, such as random adaptive
bidirectional associative memories16 , have more complicated dynamics. These stochastic systems are glob-
ally stable if within-field competition is symmetric and between-field synaptic values are symmetrizable.
Our discussion focuses more on encoding than on decoding properties of competitive learning sy:term.
So the discussion is limited to feedforward autoassociative competitive learning systems for estimating
unknown probability density functions p(x). Ileteroassociative extensions are immediate.

Competitive Learning as Adaptive Vector Quantization

Competitive learning systems adaptively quantize the patte- rn space R". The synaptic vector inj
represents, or "rounds off," the local region about mj. Each syi.-Tlic vector mj is a quantization vector.
The competitive learning system learns as synaptic vectors mi change in response to randomly sampled
training data. Geometrically, learning occurs if and only if the synaptic vectors inj move in the pattern
space R".

Competitive learning adaptively distributes the m synaptic vectors ml, . .. , mm in R" to approximate
the unknown probability density function p(x) of the random pattern vector x. The patterns x are
continuously distributed in R". p(x) describes their distribution. Where the patterns x are dense or
sparse, the synaptic vectors m i tend to be dense or sparse. Different competitive learning, or adaptive
vector quantization (AVQ), schemes distribute the synaptic vectors in different ways.

If p(x) were known, learning would be unnecessary. Numerical techniques3 ,22 could directly determine
pattern clusters or classes, centroids, and class boundaries.

All observed patterns are realizations of a single random vector x. The random vector x can be
interpreted as n ordered scalar random variables: x = (xl,. . ., z,,). This is heuristic but. incomplete.

A random vector x is a function. It is a measurable function from a sample space to a vector space.
(This means 19 inverse images x-'(0) of measurablc or open subsets 0 of the vector space are measurable
subsets of the sample space.) In the autoassociative case both spaces are R", so x : R' - R". The sigma

algebra of measurable sets is the Bore]' sigma algebra B(R"), the topological sigma algebra generated1 9

from the open subsets of l?". In practice the random vector x : R' - I?" is just the identity function:
x(v) - v for all v in /?.

The -uieulatime distribution functrion 1) : B(R") [0, 1] maps open subsets of /?" to numbers in
10, 1] and is co,,ntably additive on countably-infinite disjoint union:, of subsets of l?". p(x) characterizes
Ie "randomness" of the random vector x. '(0) is the integral of p(x) on the open set 0 C 1". Since x is

I he identity function on fl", p(x) characterizes the oc'urrncce probability of the observed p~attern salnples
,,r realizations used ill trai ii rig or recognition.

The stochastic pattern recognition framework is rigorously defined by specifyiig the probability space
(Ie", P( "), I') and the pattern random -vector function x. Ir the default case x is the identity function,

i'attern clusters or classes are sibsets of R". Some pattern classes are more probabl' than others. 'ilie
pat.tern spare I?" is parti iloned into k subsets or dctsion classes D1 ,..., 0.:



1?"= i) u ... uJnk and ni,n i), = if ii jI

'Ilie, distinctioni between supervised and unisiipervised pll~ern learning and recognition (depenlds onl
the avail able iniformation. Ini bo0th cases the probability (density function p(x) is unknown. T1hat is why
adlaptive technique-s are used instead of, say, numnerical optimization or calculus-of-variation, techiuies.

Su pervise(] learning requires more information than unsupervised learning. Unsupervised learniingue
muinial information. Pattern learning is supervised If thbe decisioni classes D) ,, Dk are known aiid the
learin g system uses this information. Thle user knows-and the algorithmn uses-the class in uiblerslii p

of vey amlepattern x.Teuser knows that x I) , aino tht / Dj for all j 54 i. Learing is
unsupcrvised if class memberships are unknown. Supervised learning systems allow anl error measure or
vector to be computed. '[le simplest error measure is the desired outcome minus the actual outcome. 'The(
error imeasure guides the learning process with feedback error correction.

AVQ Class Probability Estimation

,Flue partition property (1) implies that p(D1 ) ... +p)(Dk) =I since 1)(R") =1. The class probability
/;( I),) Is given b~y

p(D.) p(X) (IX (2)

- E[IJ] I (p)

where the integral in (2) is an n-dlimensional multiple integral. Efx] is the expectation of random variable
x. The function Is :R" - {0, 1) is the indicator function of set S. Is(x) = 1 if x f , Is(x) =0 If
x 9'S. In the probabilistic setting the indicator function Is is random (Bore] measurable'), and hience a
random variable.

A pattern x is in exactly one decision class-wvith probability one. With probability zero, pattern x
can be on the border of two or more decision classe! . p(x) = 0 for every x in R n.

A uniform partition gives p(D1 ) = Ilk for each decision class Di in the partition. Uniform partitions
are clearly not unique. Some vector quantization schemes attempt to adaptively partition R"~ into a
uniform partition. Then it should be equally likely that a pattern sample x drawn at random (according
to &~)) from R" was drawn from any one of the k decision classes Di. This corresponds to each competing
neuron "winning" with the same frequency. Competitive learning has been modified' 2 0 in several, usuallN
supJervised, ways to force the competing n ,jrons to have the same will rate. The motivation for such
imodifications is economy: fewer neurons are needed to estimate a sampled continuous function.

Nonuniform partitions are more informuative than uniform partitions. They also occur more frequeintly
whlen est imating an uniiknown p~robabili ty (leinsity funuction p( x). 'N hen the numbller of coinle iignt oi
is less than the number)P of distinct p~attern classes, wheni in < k, some neurons will more frequently titan
ot her-s. If 1p(Dj,) > p( D1 ), the competinig neuroii that codes for D,~ tends to win more frequently thanl thle
tiiron th~at. codes for D, . Eqjuivalently, mlore sample pa~tternis x tenld to be closer lit End lidean dist-ance
to thle corresponding synlaptic vector, call it iin,, that (piaiitizes Di) thiaii t~o the synaptic vector ill, thIiat

ii ;tuut.i zes U1j. Bielow we show that, ill, and Ili It ell( to arrive at the respectivye cettroi(Is of I0, anid I),.
''itt rol s ii I iIit ize the invit -isq iiared error of vector (Iutaiit i zat ion s

Ili general there are mxore. couipotiig nilutoms than decisioii classes, in > k. For iieiirous can always
be adlded to thle Cori) peti ti ye learinig systemn. Th'len if' 1(1), ) > 1)(0I) ), there tell(] t.o be more syniapici
vectors within O, than withiin 1),. Ini priiiciple all the neurons correspondIing to thle syiiaptic ve(Wtors ini

1,can have the samie wi rates. But, siince inetrical -lassihication is lise(l to decide whic~h iiuiroii wiils,
neurons with synaptic vectors nearer thle cent roild of I), tend to %wiii miore frequently.



The number of synaptic vectors in decision class , gives a nonparainetric estimiate of the cla.ss prob-

ability p(D,) : p(Dj) = '; where ni is the number of synaptic vectors in D,. In general the quantizing

synaptic vectors nonparanietrically estimate the probabfility density function jp(x). No probability assu inp-

tions need be made about the observed training samples. For any subset or voliuiie V C I1", the voluiie

probability p(V) is estimated as the ratio

p(V) = "v (4)

In

where itv is the number of synaptic vectors nii in V and In is the total number of synaptic vectors. In

the extreme case (4) gives 1,(R ' ) = 1 and p(O) = 0.

Deterministic Competitive Learning Laws

The idea behind competitive learning is learn only if win. Losing neurons, or rather their synaptic

fan-in vectors, do not learn. They also do not forget what they have already learned. The price is a

nondistributed representation5 The synapses in a synaptic vector nix become it effect "grandmother"

synapses. Each synaptic elemen, mij is a discrete memory unit, as in a random access memory.

In contrast, classical Ilebbian 6 or correlation learning distributes learned pattern-vector information

across the entire synaptic connection matrix M. But a Hlebbian system forgets learned pattern information

as it learns new pattern information.
The simplest deterministic competitive learning' 16,20 law is, in component-wise notation,

rij = Si(yi)[S,(x ) - inj] , (5)

where rhii is the time derivative of the synaptic value of the directed axonal connection from the ith

neuron in the input field Fx to the jth neuron in the output or competitive field Fy. The n-by-m matrix

M consists of the mrn values. The jth column of M is the fan-in synaptic vector nj = (mi,. ..,rni).
Scaling constants can be added or multiplied in (5) as desired. In contrast, the signal Hebbian learningrj 4

law is

rmi = -mj + S,(x,)S,(y,). (6)

(5) and (6) differ in how they forget. All learning requires some forgetting. The competitive signal Si in

(5) nonlinearly scales the decay or forget term -mi. In practice 7'l1-12,2 ° the competitive signal Sj is a

zero-one or binary threshold function. Winners forget, losers remember.

There are n neurons in Fx and m competing neurons in Fy. Each neuron in Fx or Fy is a function
that transduces its real-valued activation zi(t) or yi(t) into a bounded signal Si(zi(t)) or .5(y1 (t)) at time

t. In principle the activation functions, or membrane potential differences, xi and yj can be unbounded.

In feedback networks, the signal functions Si and Sj are usually assumed bounded and monotone

nondecreasing. So their activation derivatives Si and S- are nonnegative. In practice logistic or hyperbolic-
tangent signal functions are often used. Then the signal functions Sj and 5j are strictly increasing and

hence their activation derivatives are positive:

., dS , d.5j
0 and ). - > 0 (7)

dx, am *

For instance, the logistic signal function S(z) = (I -e-c") - 1 with scale constant c > 0 has an increasing

activation derivative S' = c S (1 - S) > 0. The logistic signal function rapidly approaches a binary

threshold function for increasing values of c.

4



In competitive learning the Fy signal functions Sj are often binary threshold functions. S (t) = I
if the jth competing neuron in Fy wins the competition for activation at time 1. Sj(t) = 0 if the jtli
neuron ioses.

The Fx signal functions Si are usually linear in feedforward systems: Sj(x) = xi. Then the saitiple
pattern x = (x, .. ,x,,) directly activates the system as the Fx signal state vector Sx(x) = x. So in
practice the competitive learning law (5) becomes

,iji = ID,(X) [X, - ,,,j] , (8)

where ID, is the zero-one indicator function of decision class 19. We assume synaptic vector i 1i codes for
class Dj, perhaps by hovering about the centroid of Dj.

Kohonen's recent 11 supervised competitive learning (SCL) law is a reinforced version of (5):

rhj= ri(x) 5, [xi - inuiI (9)

where Si is a binary threshold function determined metrically. Sj = I if x is closer in Euclidean distance
to the synaptic vector inj than to all other synaptic vectors iiii. The new term r1 in (8) is the reinforcement
function of the jth competing neuron in Fy. rj rewards when rj(x) = I and punishes when rj(x) = - I.

The reinforcement function rj is determined by the class membership of the pattern sample x. So (9)
is a supervised competitive learning law. rj(x) = 1 if x c Dj and the jth neuron wins or correctly
"classifies" x-if ID,(x) = Si(x) = 1. ri(x) = -1 if the winning jth neuron misclassifies the sample
pattern x. Misclassification means the jth neuron wins but x ( Di, or x / Di, for some i $ j. Then

ID,(X) = 0 but ID,(x) = S = 1. Since, with probability one, x belongs to exactly one decision class,
the reinforcement function reduces to a difference of decision-class indicator functions:

ri = ID, - E ID. (10)

(10) makes explicit the dependence of r1 on the knowledge of the decision class boundaries.

The unsupervised differential competitive learning16 (DCL) law modulates the vector difference x- mj
with the competitive win rate Sj:

rii = Sj(yi) [Si(x) - rniJ , (11)

where the signal velocity Sj decomposes as S j by the chain rule. The idea is learn only if change. The

signal velocity in (11) behaves in sign much as the reinforcement function in (9). The signal velocity Sj (t)
is positive or negative according as the jth competing neuron's winning status is increasing or decreasing
at time t. The signal velocity does not depend on the decision-class indicator functions. So the DCL law
(11) is unsupervised.

In practice the Fx signal function Si is linear. Then simulations12 show that the DCL law and
Kohonen's SCL law (9) behave similarly. The DCL systems tend to converge to decision class centroids at.
least as fast as SCL systems do and tend to wander about the centroids with less variance. Tile competitive
learning laws (5) and (9) ignore the win-rate information provided by the signal velocity in (11).

The pulse-coded"' 6 signal function Sj is an exponentially weighted average of binary pulses:

S,(t) = yj(s) e'' ds/ , (12)

whiere the pulse function yj is defined by yj (t) = I if a pulse is present. at time I and yj(t) = 0 if no

pilse is present. [hen the signal velocity is the simple, locally available, difference

.5j (1) -- !/j(t) - .5j (t)( .)



Tiie velocity-difference representation (13) eliiniiates the need for an approximatioI algorithm to

calculate tile signal velocity. Biological, or silicon, synapses can modify their values in rejtime with

signal velocity information. Biological neurons transmit and receive pulse trains, not real-valued sigmmoidal

outputs. The presence or absence of a pulse is easier to detect, amplify, and emit than a miulti-valued

signal. (13) shows that much of the time the arriving pulse yj(l) indicates the instantancous sign of tlme

signal velocity.
The pulse-coded differential competitive law approximates"6 the classical competitive law (5) as can

be seen by substituting (13) into (11) and expanding terms. A related approximation of the signal llebl

law (6) occurs when (13) eliminates a product of signal velocities in a comparable differential llebbian

1earnin99-10,13.1 5 - 16 law.

Stochastic Competitive Learning Laws and Algorithms

Stochastic competitive learning laws are stochastic differential equations. They describe how synaptic

random processes change as a function of other random processes. Their solution is a synaptic random

process2 l .

The deterministic competitive learning laws (5), (9), and (11) are simple stochastic differential equa-

tions if the signal terms Si(zi(t)) are random variables at each time t. This is so when the sample vectors

x are random samples, realizations of the pattern random-vector process x : " - Rn. The randomness

in the vector components xi induces randomness in the signal function Si and thus in the synaptic vectors

mj. In general each term in a stochastic differential equation is a random process.

Another simple stochastic differential equation arises when random noise is added to a differential

equation. The randomness in the noise process induces randomness in the dependent variables. In general,

and in this discussion, an independent noise process is added to a stochastic differential equation.

The stochastic competitive learning law is, in vector notation,

dmj = Si(yj) [S(x) - mi] dt + dBj , (14)

where Sj is a steep competitive signal process taking values in [0, 1] and S(x) = (S,(zx),..., S,(xn)) for

random pattern x. Bj is a Brownian motion diffusion process.
The pseudo-derivative2l of Bj is the zero-mean white noise process ni. The pseudo-derivative can be

formed as a mean-squared limit. The noise process nj is zero-mean, E[nij] = 0, has finite variance, and

is independent of the "signal" term Sj(yi) [S(x) - mj]. Then competitive learning laws can be written
in less rigorous, more intuitive, "noise" notation. For example, (14) becomes

iij= Sj(yj) ((x) - inj + ii, . (15)

In practice .S is a binary threshold function and can often be replaced with the class indicator function

ID,. The Fx signal processes Si are linear. So (15) becomes

In) = IJ),(X)[x - i,] + ij (16)

The stochastic version of lKohonen's supervised competitive learning (SCL) law is

Iij = rj(x) Sj(y) x - in,] + Iij (17)

The stochastic version of the differential competitive learning (i)CL) law is

in1  = Sj(yj)[x - i"J + Ii , (8)

or, ini pulse-coded foriu,



,i,, [y,() - s (X 1x -1,,] + -i,(o

where the pulse process yj is a random point process, perhaps Poisson in nature. (19) is thus a doubly
stochastic synaptic niodel.

For practical implementation these three stochastic competitive learning models can he written as
stochastic difference equations by replacing the third step in the following competitive AVQ algorithm.
(listorical note: Tsypkin2' derived the "winning" parts of the UCL algorithm and, with his adaptive
Bayes approach, the SCL algorithm in a non-neural context.) A random noise term has not been added
to the difference equations. The noise processes in the above models can represent unmodeled effects,
roundoff errors, or sample-size defects.

Competitive AVQ Algorithms

1. Initialize synaptic vectors: ini(0) = x(i), i = 1,. .

2. For random sample x(t), find the closest ("winning") synaptic vector iij(t):

Ilmi(t) - x(t)J m iI'n (t) - x(t)Jl (20)

where I xl12 = X2 + + X zis the squared Euclidean norm of x.

3. Update the winning synaptic vector(s) nj(t) by the UCL, SCL, or DCL learning algorithm.

Unsupervised Competitive Learning (UCL)

m,(t + 1) = m(t) + ct[x(t) - mi(t)] , (21)

mi(t + 1) = mi(t) if i $4 j ,

where, in the spirit of stochastic approximation2 2, ct is a slowly decreasing sequence of learning coefficients.
For instance, ct = .1(1 - t ) for 10,000 samples x(t).

Supervised Competitive Learning (SCL)

i(t + 1) = ,(t) + ct rj(x(t)) jx(t) - ,i(i)] (22)

f in(t) + c, (x(t) - nij(t)] if x correctly classified

nim,(t) - c, [x(t) - ixi,(t)] if x misclassified.

Differential Competitive Learning (DCL)

inj(t + 1) = inj(t) + cASj(yj(t)) [x(t) - uju(t)] , (24)

mi(t + l) = mi(t) if i / j



where ASj(y,(t)) is the time change of the jth neuron's corna etitive signal ..5(yj) in the coiwpetitiOn

field Er:

ASj(y1 (t)) = Sj(y,(t + )) - S,(!Ij(t)) (25)

In practice1 2 only the sign of the difference (25) may be used. The F," neuironal activations yj can be
updated by an additive model:

y,(t + 1) = y,(t) + s,(xj) ,,(t) + >jS,(yi.) ,,j . (26)
i=1 k=l

The fixed competition matrix W defines a symmetric lateral inhibition topology within Fy. in the simplest
case, wjj = I andwij = -1 for distinct i and j.

Stochastic Equilibrium and Convergence

Competitive synaptic vectors inj converge to decision class centroids. The ccntroids may be local
maxima of the sampled but unknown probability density function p(x).

In general, when there are more synaptic vectors than probability maxima, the synaptic vectors cluster
about local probability maxima. Comparatively few synaptic vectors may actually arrive at centroids. We
only consider convergence to centroids. The justification is that any local connected patch of the sample
space R' can be viewed as a candidate decision class. Each synaptic vector samples such a local patch
and converges to its centroid.

We first prove the AVQ Centroid Theorem: If a competitive AVQ system converges, it converges to
the centroid of the sampled decision class. The AVQ Centroid Theorem is an equilibrium or steady-state
result. We prove the theorem only for unsupervised competitive learning, but argue that it holds for
supervised and differential competitive learning in most cases of practical interest.

Next we use a Lyapunov argument to reprove and extend the AVQ Centroid Theorem to the AVQ
Convergence Theorem: Stochastic competitive learning systems are asymptotically stable, and synaptic
vectors converge to centroids. So competitive AVQ systems always converge, and converge exponentially
fast. Both results are true with probability one.

The unknown probability density function p(x) defines the class centroids, the mean-squared optimal
vectors of quantization. Competitive learning estimates these optimal quantization vectors without knowl-
edge of p(x). That is the advantage of competitive learning, and optimal learning in general.

AVQ Centroid Theorem:

Prob(mj = Rj) I at equilibrium . (27)

The centroid xj of decision class Dj is defined by

x )(x) dx
= (28)1) (X ) dIx

E=xlx ( 1 (29)

The random vector Ef xf. 1, the conditional expectation, is a function of Borel measurable subsets Dj of I".

mmM i i tm Ii m~li I I I



Proof. Suppose the jth neuron in F1, wins the activation competition during the training interval.
Suppose the jth synaptic vector mj codes for decision class Dj. So ID,(x) = 1 iff Sj = 1. Suppose
stochastic equilibrium has been reached:

ii  =0 , (30)

which holds with probability one (or in thei mean-square sense, depending on how the stochastic differentials
are defined). Take expectations of both sides of (30), use the zero-mean property of the noise proce.ss,
eliminate the synaptic velocity vector imij with the conpetitive law (16), and expand to give

0 E[iiij] (31)

j I(x) (X - in,) p(x) dx + E[ii] (32)

j I (x - nj) 1,(X) (IX (33)

= D xp(x)dx -injI_ p(x)dx , (34)

since inj is constant with probability one. Solving for the equilibrium synaptic vector inj gives the cen-
troid ki defined by (28). Q.E.D.

In general the AVQ Centroid Theorem concludes that the average synaptic vector E[mj] equals the
jth centroid Rj at equilibrium:

E[mj] = Rj (35)

The equilibrium synaptic vector inj vibrates randomly around the constant centroid Fj. nii equals xj
on average at each post-equilibration instant. Simulations12 exhibit such random wandering about the

centroid.
Synaptic vectors learn noise as well as signal. So they vibrate at equilibrium. The independent additive

noise process nj in (16) drives the random vibration. The steady-state condition (30) models the rare
event that noise cancels signal. In general it models stochastic equilibrium in the absence of additive noise.

The general stochastic steady-state condition is defined by the stochastic differential equation

tin =n (36)

Taking expectations of both sides of (36) still gives (31), since the noise process iij is zero-mean, and
the argument proceeds as before. Taking a second expectation in (33) and using (31) gives (35).

The AVQ Centroid Theorem applies to the stochastic SCL law (17) because winners are picked

metrically by the nearest-neighbor criterion (20). The reinforcement function ri in (10) reduces to

rj(x) = -ID,(x) = -1 if the jth neuron continually wins for random samples x from class Di.
This tends to occur once the synaptic vectors have spread out in R" and Di is close, usually contiguous,
to Dj. Then nij converges to xi, the centroid of Di, since the steady state condition (30) removes the
scaling constant -I that then appears in (33).

''his argument holds only approximately when, in the exceptional case, ini repeatedly misclassifies
patterns x from several classes Dk. Then the difference of indicator functions in (10) replaces the single

9



indicator function ID, in (32). The resultant equilibrium mi is a more general ratio tha the centroid.
The density p(x) must be integrated over R" not just Di .

The AVQ Centroid Theorem applies similarly to the stochastic DCL law (18). A positive or negative
factor scales the difference x - mi. If, as in practice and in (24), a constant approximates the scaling
factor, the steady state condition (30) removes the constant from (33) and *n, estimates the centroid *j.

The integrals in (31) - (34) are spatial integrals over R" or subsets of R'. Yet in the discrete UCL,
SCL, and DCL algorithms, the recursive equations for ij(t + 1) define ternporal integrals over the training
interval.

The two integrals are approximately equal. The discrete random samples x(0), x(l), x(2).... partially
enumerate the continuous distribution of equilibrium realizations of the random vector x. The time
index in the discrete algorithms approximates the "spatial index" underlying p(x). So the recursion
mj(t + 1) = mj(t) + ... approximates the averaging integral. We sample patterns one at a time. We
integrate them all at a time.

The AVQ Centroid Theorem assumes that stochastic convergence occurs. Convergence is trivial for
continuous deterministic competitive learning, at least in feedforward networks. If Si is a positive constant
in (5), then mij converges to Si exponentially fast. Convergence is not trivial for stochastic competitive
learning in noise.

The AVQ Convergence Theorem ensures exponential convergence. The theorem does not depend on
how the Fy neurons change in time. In effect metrical classification is assumed: Sj = 1 iff ID,(x) = 1.
The strictly decreasing deterministic Lyapunov function E[L] replaces1 6 the random Lyapunov function
L: C- R?, where C is a closed and bounded (compact) subset of R-.

A strictly decreasing Lyapunov function yields asymptotic stability17 . Then the real parts of the
eigenvalues of the system Jacobian matrix are strictly negative, and locally the nonlinear system be-
haves linearly. Synaptic vectors converges exponentially quickly to equilibrium points-to pattern-class
centroids-in the state space. Technically, nondegenerate Hessian matrix conditions must be assumed.
Else some eigenvalues can have zero real parts.

AVQ Convergence Theorem: Competitive synaptic vectors converge exponentially quickly to pattern-
class centroids.

Proof. Consider the random quadratic form L:

L = 2 (X, - Mij) 2  (37)
i i

Note that if x = ij in (37), then with probability one L > 0 if any inj 4 xj and L = 0 iff mj = Rj
for every inj.

The pattern vectors x do not change in time. (The following argument is still valid if the pattern
vectors x change slowly relative to synaptic changes-if the density p(x) is mildly nonstationary.) This
simplifies the stochastic derivative of L:

4L (L

i i j cii nj(8

ailO ' (39)
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-- i) l;lj (40)

iii

L is a random variable at every time t. E[L] is a deterministic number at every t. The trick is to use the
average E[L] as a Lyap,inov function for the stochastic competitive dynamical system. For this we must

assume sufficient smoothness to interchange the time derivative and the probabilistic integral-to bring
the time derivative "inside" the integral. Then the zero-mean noise assumption, and the independence of
the noise process nj with the "signal" process x - ij, gives

E[L] = E[L] (42)

=-1 (zi - rij)2 p(x) dx (43)

So, on average by the learning law (16), E[L] < 0 iff any synaptic vector inj moves along its trajectory.
So the competitive AVQ system is asymptotically stable8 17 and, in general, converges exponentially quickly
to equilibria.

Suppose E[L] = 0. Every synaptic vector has reached equilibrium and is constant (with probability
one). Then 19 , since p(x) is a nonnegative weight function, the weighted integral of the learning differences
xi - nij must also be zero:

IDj (x -- mi) p(x) dx = 0 (44)

in vector notation. (44) is identical to (33). So, with probability one, equilibrium synaptic vectors are
centroids. More generally, as discussed above, (35) holds. Average equilibrium synaptic vectors are cen-
troids: E[mj] = Rj. Q.E.D.

The sum of integrals (43) defines the total mean-squared error of vector quantization for the partition
Dj,•.., Dk. The vector integral in (44) is the gradient of E[L] with respect to mi. So the AVQ Convergence
Theorem implies that class centroids-and, asymptotically, competitive synaptic vectors-minimize the
mean-squared error of vector quantization.

Then by (16), the synaptic vectors perform stochastic gradient descent on the mean-squared-error sur-
face in the pattern-plus-error space R"+'. The difference x(t) - mi(t) behaves as an error vector. The
competitive system estimates the unknown centroid *j as x(t) at each time t. Learning is unsupervised
but proceeds as if it were supervised.
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